abs_op.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/abs_op.h"

#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

namespace paddle {
namespace operators {

class AbsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "abs");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "abs");

    auto in_dims = ctx->GetInputDim("X");

    ctx->SetOutputDim("Out", in_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), The input tensor of abs op.");
    AddOutput("Out", "(Tensor), The output tensor of abs op.");
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<bool>("use_cudnn",
                  "(bool, default false) Only used in cudnn kernel, need "
                  "install cudnn")
        .SetDefault(false);
    AddComment(R"DOC(
Abs Operator.

This operator is used to perform elementwise abs for input $X$.
$$out = |x|$$

)DOC");
  }
};

class AbsGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@Grad", "AbsGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@Grad", "AbsGrad");

    auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    ctx->SetOutputDim(framework::GradVarName("X"), dout_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(dtype, ctx.GetPlace());
  }
};

template <typename T>
class AbsGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("abs_grad");
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetInput("X", this->Input("X"));
    retv->SetAttrMap(this->Attrs());
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

// AbsGrad: dx=dy if x >=0 else -dy
// AbsDoubleGrad: ddy = ddx if x >=0 else -ddx
template <typename T>
class AbsDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("abs_grad_grad");
    // input1: x
    op->SetInput("X", this->Input("X"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

class AbsDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("X", "DDOut");
      ctx->ShareLoD("X", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
    return framework::OpKernelType(dtype, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    return framework::OpKernelType(tensor.type(), tensor.place(),
                                   tensor.layout());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(abs, ops::AbsOp, ops::AbsOpMaker,
                  ops::AbsGradMaker<paddle::framework::OpDesc>,
                  ops::AbsGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(abs_grad, ops::AbsGradOp,
                  ops::AbsDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::AbsDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(abs_grad_grad, ops::AbsDoubleGradOp);

REGISTER_OP_CPU_KERNEL(
    abs, ops::AbsKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AbsKernel<paddle::platform::CPUDeviceContext, double>,
    ops::AbsKernel<paddle::platform::CPUDeviceContext, int>,
    ops::AbsKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::AbsKernel<paddle::platform::CPUDeviceContext,
167
                   paddle::platform::complex<float>>,
168
    ops::AbsKernel<paddle::platform::CPUDeviceContext,
169
                   paddle::platform::complex<double>>);
170 171 172 173 174 175 176

REGISTER_OP_CPU_KERNEL(
    abs_grad, ops::AbsGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AbsGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::AbsGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::AbsGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::AbsGradKernel<paddle::platform::CPUDeviceContext,
177
                       paddle::platform::complex<float>>,
178
    ops::AbsGradKernel<paddle::platform::CPUDeviceContext,
179
                       paddle::platform::complex<double>>);
180 181 182 183 184 185 186 187 188 189

REGISTER_OP_CPU_KERNEL(
    abs_grad_grad,
    ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::float16>,
    ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
190
                             paddle::platform::complex<float>>,
191
    ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
192
                             paddle::platform::complex<double>>);