test_gradient_accmulator.cc 17.4 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
16
#include <type_traits>
J
Jiabin Yang 已提交
17
#include <vector>
18

J
Jiabin Yang 已提交
19
#include "gtest/gtest.h"
20
#include "paddle/fluid/framework/convert_utils.h"
J
Jiabin Yang 已提交
21 22 23
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include "paddle/fluid/memory/memcpy.h"
24
#include "paddle/pten/kernels/funcs/math_function.h"
J
Jiabin Yang 已提交
25 26 27 28 29 30 31

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;
namespace paddle {
namespace imperative {

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
TEST(Test__SelectedRowsMerge_Test, SelectedRowsMerge) {
  pten::CPUPlace cpu;

  std::vector<int64_t> rows{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
  int64_t table_size = 10;
  int64_t embedding_width = 10;

  auto sr1 = std::make_shared<pten::SelectedRows>(rows, table_size);
  auto sr2 = std::make_shared<pten::SelectedRows>(rows, table_size);

  // initialize a sparse table 1
  sr1->mutable_value()->Resize(
      pten::framework::make_ddim({table_size, embedding_width}));
  auto* data_sr1 = sr1->mutable_value()->mutable_data<float>(cpu);
  for (int64_t i = 0; i < table_size; ++i) {
    for (int64_t j = 0; j < embedding_width; ++j) {
      data_sr1[i * embedding_width + j] = static_cast<float>(i);
    }
  }

  // initialize a sparse table 2
  sr2->mutable_value()->Resize(
      pten::framework::make_ddim({table_size, embedding_width}));
  auto* data_sr2 = sr2->mutable_value()->mutable_data<float>(cpu);
  for (int64_t i = 0; i < table_size; ++i) {
    for (int64_t j = 0; j < embedding_width; ++j) {
      data_sr2[i * embedding_width + j] = static_cast<float>(i);
    }
  }
  // new 2 pten::Tensor
  paddle::experimental::Tensor t1(sr1);
  paddle::experimental::Tensor t2(sr2);

  // call SelectedRowsMerge
  auto new_buffer =
      paddle::imperative::SelectedRowsMerge<paddle::experimental::Tensor>(t1,
                                                                          t2);
  auto* new_buffer_tensor =
      static_cast<pten::SelectedRows*>(new_buffer->impl().get());
  auto* new_buffer_data_sr1 =
      new_buffer_tensor->mutable_value()->mutable_data<float>(cpu);

  // verify the MergeAdd result
  for (int64_t i = 0; i < table_size; ++i) {
    for (int64_t j = 0; j < embedding_width; ++j) {
      EXPECT_EQ(new_buffer_data_sr1[i * embedding_width + j],
                (static_cast<float>(i) + static_cast<float>(i)));
    }
  }
}

83 84
template <typename Place1, typename Place2, typename T>
int TensorddTest(Place1 place1, Place2 place2, T t1, T t2) {
J
Jiabin Yang 已提交
85 86 87 88 89 90 91 92 93
  framework::Variable var1;
  framework::Variable var2;
  std::vector<T> src_data(10, t1);
  std::vector<T> dst_data(10, t2);
  std::vector<T> result;
  platform::CPUPlace src_place;
  for (unsigned int i = 0; i < 10; i++) {
    result.emplace_back(src_data[i] + dst_data[i]);
  }
94

J
Jiabin Yang 已提交
95 96 97 98 99
  std::vector<int64_t> dims = {2, 5};
  auto* src = var1.GetMutable<framework::LoDTensor>();
  auto* dst = var2.GetMutable<framework::LoDTensor>();
  src->Resize(framework::make_ddim(dims));
  dst->Resize(framework::make_ddim(dims));
100 101 102 103 104
  auto* src_mutable = src->mutable_data<T>(place1);
  auto* dst_mutable = dst->mutable_data<T>(place2);

  if (!std::is_same<Place1, platform::CUDAPlace>::value) {
    paddle::memory::Copy(place1, src_mutable, src_place, src_data.data(),
105
                         sizeof(T) * src_data.size());
106
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
107
  } else {
108
    paddle::memory::Copy(place1, src_mutable, src_place, src_data.data(),
109
                         sizeof(T) * src_data.size(), 0);
110 111 112 113 114 115 116 117 118
#endif
  }

  if (!std::is_same<Place2, platform::CUDAPlace>::value) {
    paddle::memory::Copy(place2, dst_mutable, src_place, dst_data.data(),
                         sizeof(T) * dst_data.size());
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  } else {
    paddle::memory::Copy(place2, dst_mutable, src_place, dst_data.data(),
119
                         sizeof(T) * dst_data.size(), 0);
J
Jiabin Yang 已提交
120 121
#endif
  }
122
  imperative::TensorAdd<framework::Variable>(var1, &var2);
J
Jiabin Yang 已提交
123 124 125 126 127 128 129
  framework::LoDTensor rlt;
  platform::CPUPlace rlt_place;
  framework::TensorCopySync(*dst, rlt_place, &rlt);

  for (unsigned int i = 0; i < rlt.numel(); i++) {
    if (rlt.data<T>()[i] != result[i]) return 1;
  }
130

J
Jiabin Yang 已提交
131 132 133 134
  return 0;
}

TEST(test_add_functor, add_functor) {
135
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
J
Jiabin Yang 已提交
136 137 138 139 140
  platform::CUDAPlace gpu_place(0);
#endif
  platform::CPUPlace cpu_place;

  int cpu_res = 1;
141 142 143 144

  // float32
  cpu_res = TensorddTest(cpu_place, cpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
145
  EXPECT_EQ(cpu_res, 0);
146 147 148 149
  // float16
  cpu_res =
      TensorddTest(cpu_place, cpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
J
Jiabin Yang 已提交
150
  EXPECT_EQ(cpu_res, 0);
151 152 153 154 155

#ifndef PADDLE_WITH_XPU
  // does not support double when compiled using xpu
  cpu_res = TensorddTest(cpu_place, cpu_place, static_cast<double>(1.0),
                         static_cast<double>(2.0));
J
Jiabin Yang 已提交
156
  EXPECT_EQ(cpu_res, 0);
157 158
#endif

159
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
J
Jiabin Yang 已提交
160
  int gpu_res = 1;
161
  gpu_res = TensorddTest(gpu_place, gpu_place, 1.0, 0.0);
162
  EXPECT_EQ(gpu_res, 0);
163
  gpu_res = TensorddTest(gpu_place, gpu_place, static_cast<double>(1.0),
164
                         static_cast<double>(2.0));
J
Jiabin Yang 已提交
165
  EXPECT_EQ(gpu_res, 0);
166 167 168 169 170

  // normal
  gpu_res = TensorddTest(gpu_place, gpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
  EXPECT_EQ(gpu_res, 0);
171 172 173
  gpu_res =
      TensorddTest(gpu_place, gpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
J
Jiabin Yang 已提交
174
  EXPECT_EQ(gpu_res, 0);
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  // different places
  gpu_res = TensorddTest(cpu_place, gpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
  EXPECT_EQ(gpu_res, 0);
  gpu_res = TensorddTest(gpu_place, cpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
  EXPECT_EQ(gpu_res, 0);
  gpu_res =
      TensorddTest(cpu_place, gpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
  EXPECT_EQ(gpu_res, 0);
  gpu_res =
      TensorddTest(gpu_place, cpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
  EXPECT_EQ(gpu_res, 0);
J
Jiabin Yang 已提交
190
#endif
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

#ifdef PADDLE_WITH_XPU
  platform::XPUPlace xpu_place(0);
  int xpu_res = 1;
  // normal
  xpu_res = TensorddTest(xpu_place, xpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
  EXPECT_EQ(xpu_res, 0);
  xpu_res =
      TensorddTest(xpu_place, xpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
  EXPECT_EQ(xpu_res, 0);
  // different places
  xpu_res = TensorddTest(cpu_place, xpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
  EXPECT_EQ(xpu_res, 0);
  xpu_res = TensorddTest(xpu_place, cpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
  EXPECT_EQ(xpu_res, 0);
  xpu_res =
      TensorddTest(cpu_place, xpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
  EXPECT_EQ(xpu_res, 0);
  xpu_res =
      TensorddTest(xpu_place, cpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
  EXPECT_EQ(xpu_res, 0);
#endif
J
Jiabin Yang 已提交
219 220
}

221 222 223 224 225
TEST(test_add_functor, execption) {
  platform::CUDAPinnedPlace cuda_pinned_place;
  platform::CUDAPlace cuda_place(0);
  platform::CPUPlace cpu_place;

226
  ASSERT_ANY_THROW(TensorddTest(cpu_place, cpu_place, 1, 0));
227
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
228 229 230
  ASSERT_ANY_THROW(
      TensorddTest(cuda_pinned_place, cuda_pinned_place, 1.0, 0.0));
  ASSERT_ANY_THROW(TensorddTest(cuda_pinned_place, cuda_pinned_place,
231 232 233 234 235
                                static_cast<platform::float16>(1.0),
                                static_cast<platform::float16>(2.0)));
#endif
}

236 237 238 239 240 241 242 243 244
static void CopyVar(const framework::Variable& var,
                    framework::Variable* dst_ptr) {
  auto& dst = *dst_ptr;
  dst.Clear();
  if (var.IsType<framework::LoDTensor>()) {
    const auto& src_tensor = var.Get<framework::LoDTensor>();
    auto* dst_tensor = dst.GetMutable<framework::LoDTensor>();
    framework::TensorCopySync(src_tensor, src_tensor.place(), dst_tensor);
  } else {
245 246
    const auto& src_selected_rows = var.Get<pten::SelectedRows>();
    auto* dst_selected_rows = dst.GetMutable<pten::SelectedRows>();
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    dst_selected_rows->set_rows(src_selected_rows.rows());
    dst_selected_rows->set_height(src_selected_rows.height());
    framework::TensorCopySync(src_selected_rows.value(),
                              src_selected_rows.value().place(),
                              dst_selected_rows->mutable_value());
  }
}

static bool IsEqualVar(const framework::Variable& var1,
                       const framework::Variable& var2) {
  if (var1.Type() != var2.Type()) {
    return false;
  }

  framework::Tensor t1, t2;

  if (var1.IsType<framework::LoDTensor>()) {
    framework::TensorCopySync(var1.Get<framework::LoDTensor>(),
                              platform::CPUPlace(), &t1);
    framework::TensorCopySync(var2.Get<framework::LoDTensor>(),
                              platform::CPUPlace(), &t2);
  } else {
269 270
    auto& s1 = var1.Get<pten::SelectedRows>();
    auto& s2 = var2.Get<pten::SelectedRows>();
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    if (s1.height() != s2.height()) {
      return false;
    }

    if (s1.rows().size() != s2.rows().size()) {
      return false;
    }

    auto row1_data = s1.rows().data();
    auto row2_data = s2.rows().data();
    if (std::memcmp(row1_data, row2_data,
                    s1.rows().size() * sizeof(*row1_data)) != 0) {
      return false;
    }

287
    framework::TensorCopySync(var1.Get<pten::SelectedRows>().value(),
288
                              platform::CPUPlace(), &t1);
289
    framework::TensorCopySync(var2.Get<pten::SelectedRows>().value(),
290 291 292 293 294 295 296
                              platform::CPUPlace(), &t2);
  }

  if (t1.type() != t2.type() || t1.dims() != t2.dims()) {
    return false;
  }

297 298
  auto* t1_p = t1.data();
  auto* t2_p = t2.data();
299 300 301 302
  return std::memcmp(
             t1_p, t2_p,
             t1.numel() * framework::SizeOfType(
                              framework::TransToProtoVarType(t1.dtype()))) == 0;
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
}

template <typename T>
static framework::Variable RandomTensor(const framework::DDim& dims,
                                        const platform::Place& place,
                                        int low = -10, int high = 10) {
  framework::Tensor cpu_tensor;
  cpu_tensor.Resize(dims);
  auto* ptr = cpu_tensor.mutable_data<T>(platform::CPUPlace());
  std::uniform_int_distribution<int> dist(low, high);
  std::random_device rd;
  std::mt19937 engine(rd());
  for (int64_t i = 0; i < cpu_tensor.numel(); ++i) {
    ptr[i] = dist(engine);
  }

  framework::Variable ret;
  framework::TensorCopySync(cpu_tensor, place,
                            ret.GetMutable<framework::LoDTensor>());
  return ret;
}

template <typename T>
static framework::Variable RandomSelectedRows(framework::DDim dims,
                                              const platform::Place& place,
                                              int64_t row_number, int low = -10,
                                              int high = 10) {
  auto height = dims[0];
  dims[0] = row_number;

  framework::Variable ret;
334
  auto* sr = ret.GetMutable<pten::SelectedRows>();
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
  auto tensor_var = RandomTensor<T>(dims, place, low, high);
  sr->mutable_value()->ShareDataWith(
      tensor_var.template Get<framework::LoDTensor>());
  sr->set_height(height);
  sr->mutable_rows()->resize(row_number);
  auto* row_data = sr->mutable_rows()->data();
  std::uniform_int_distribution<int64_t> dist(0, height - 1);
  std::random_device rd;
  std::mt19937 engine(rd());
  for (int64_t i = 0; i < dims[0]; ++i) {
    row_data[i] = dist(engine);
  }
  return ret;
}

static std::unique_ptr<GradientAccumulator> CreateAccumulator(
    const std::shared_ptr<VariableWrapper>& var, bool sort_gradient) {
  if (sort_gradient) {
    return std::unique_ptr<GradientAccumulator>(
        new SortedGradientAccumulator(var.get()));
  } else {
    return std::unique_ptr<GradientAccumulator>(
        new EagerGradientAccumulator(var.get()));
  }
}

static void TestGradientAccumulatorTestUnchangeInput(
    const platform::Place& place, bool sort_gradient) {
  framework::DDim dim{10, 20};
  int64_t maximum_row_number = 100;

  std::uniform_int_distribution<int64_t> dist(1, maximum_row_number);
  int seed;
  {
    std::random_device rd;
    seed = rd();
  }

  std::mt19937 engine(seed);

  auto create_var = [&](bool use_tensor) {
    if (use_tensor) {
      return RandomTensor<float>(dim, place);
    } else {
      return RandomSelectedRows<float>(dim, place, dist(engine));
    }
  };

  std::vector<bool> use_tensors = {false, true};

  for (auto use_tensor1 : use_tensors) {
    for (auto use_tensor2 : use_tensors) {
387 388 389
      /** g_accum1 && g_accum2: has not been initialized
       *    test accumulate on this graph
      */
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
      auto g_var1 = std::make_shared<VariableWrapper>("g_var1");
      g_var1->SetOverridedStopGradient(false);
      auto g_accum1 = CreateAccumulator(g_var1, sort_gradient);
      g_accum1->IncreaseRefCnt();
      g_accum1->IncreaseRefCnt();

      auto g_var2 = std::make_shared<VariableWrapper>("g_var2");
      g_var2->SetOverridedStopGradient(false);
      auto g_accum2 = CreateAccumulator(g_var2, sort_gradient);
      g_accum2->IncreaseRefCnt();
      g_accum2->IncreaseRefCnt();

      auto var1 = create_var(use_tensor1);
      auto var_wrapper1_1 = std::make_shared<VariableWrapper>("tmp1_1");
      auto var_wrapper2_1 = std::make_shared<VariableWrapper>("tmp2_1");
405 406

      ASSERT_EQ(var_wrapper1_1->IsEmpty(), true);
407
      CopyVar(var1, var_wrapper1_1->MutableVar());
408 409 410
      ASSERT_EQ(var_wrapper1_1->IsEmpty(), false);

      ASSERT_EQ(var_wrapper2_1->IsEmpty(), true);
411
      CopyVar(var1, var_wrapper2_1->MutableVar());
412
      ASSERT_EQ(var_wrapper2_1->IsEmpty(), false);
413 414 415 416 417 418 419

      auto var2 = create_var(use_tensor2);
      auto var_wrapper1_2 = std::make_shared<VariableWrapper>("tmp1_2");
      auto var_wrapper2_2 = std::make_shared<VariableWrapper>("tmp2_2");
      CopyVar(var2, var_wrapper1_2->MutableVar());
      CopyVar(var2, var_wrapper2_2->MutableVar());

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
      // g_accum1: inner_var_ = var1 + var2
      g_accum1->SumGrad(var_wrapper1_1, 0, false);
      g_accum1->SumGrad(var_wrapper1_2, 1, false);
      ASSERT_EQ(g_accum1->CurCnt(), g_accum1->RefCnt());
      ASSERT_TRUE(g_accum1->SumGradCompleted());
      // g_accum1: inner_var_ -> var_
      g_accum1->AccumulateGrad();

      // g_accum2: inner_var_ = var1 + var2
      g_accum2->SumGrad(var_wrapper2_1, 0, true);
      g_accum2->SumGrad(var_wrapper2_2, 1, true);
      ASSERT_EQ(g_accum2->CurCnt(), g_accum2->RefCnt());
      ASSERT_TRUE(g_accum2->SumGradCompleted());
      // g_accum2: inner_var_ -> var_
      g_accum2->AccumulateGrad();
435 436 437 438

      ASSERT_TRUE(IsEqualVar(var_wrapper2_1->Var(), var1));
      ASSERT_TRUE(IsEqualVar(var_wrapper2_2->Var(), var2));
      ASSERT_TRUE(IsEqualVar(g_var1->Var(), g_var2->Var()));
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

      /** g_accum3 && g_accum4: has been initialized
       *    test accumulate on previous graph
      */
      auto var3 = create_var(use_tensor1);
      auto var_wrapper3_3 = std::make_shared<VariableWrapper>("tmp1_3");
      auto var_wrapper4_3 = std::make_shared<VariableWrapper>("tmp2_3");
      var_wrapper3_3->SetOverridedStopGradient(false);
      var_wrapper4_3->SetOverridedStopGradient(false);
      CopyVar(var3, var_wrapper3_3->MutableVar());
      CopyVar(var3, var_wrapper4_3->MutableVar());

      auto g_accum3 = CreateAccumulator(var_wrapper3_3, sort_gradient);
      g_accum3->IncreaseRefCnt();
      auto g_accum4 = CreateAccumulator(var_wrapper4_3, sort_gradient);
      g_accum4->IncreaseRefCnt();

      auto var4 = create_var(use_tensor2);
      auto var_wrapper3_4 = std::make_shared<VariableWrapper>("tmp1_4");
      auto var_wrapper4_4 = std::make_shared<VariableWrapper>("tmp2_4");
      CopyVar(var4, var_wrapper3_4->MutableVar());
      CopyVar(var4, var_wrapper4_4->MutableVar());

      g_accum3->SumGrad(var_wrapper3_4, 0, false);
      ASSERT_TRUE(g_accum3->SumGradCompleted());
      // g_accum4: var_(var_wrapper3_3) + inner_var_ -> var_
      g_accum3->AccumulateGrad();

      g_accum4->SumGrad(var_wrapper4_4, 0, false);
      ASSERT_TRUE(g_accum4->SumGradCompleted());
      // g_accum4: var_(var_wrapper4_3) + inner_var_ -> var_
      g_accum4->AccumulateGrad();

      ASSERT_TRUE(IsEqualVar(var_wrapper3_3->Var(), var_wrapper4_3->Var()));
473 474 475 476 477 478 479 480
    }
  }
}

TEST(test_gradient_accumulator, test_unchange_input) {
  for (auto sort_gradient : {false, true}) {
    TestGradientAccumulatorTestUnchangeInput(platform::CPUPlace(),
                                             sort_gradient);
481
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
482 483 484 485 486 487
    TestGradientAccumulatorTestUnchangeInput(platform::CUDAPlace(0),
                                             sort_gradient);
#endif
  }
}

J
Jiabin Yang 已提交
488 489
}  // namespace imperative
}  // namespace paddle