executor_gc_helper.cc 9.7 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/executor_gc_helper.h"
W
wanghuancoder 已提交
16

S
sneaxiy 已提交
17
#include <string>
W
wanghuancoder 已提交
18

S
sneaxiy 已提交
19
#include "glog/logging.h"
W
wanghuancoder 已提交
20 21 22
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/op_info.h"
23
#include "paddle/fluid/framework/op_registry.h"
W
wanghuancoder 已提交
24 25
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
26 27 28
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
S
sneaxiy 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {

struct OpInOutInfo {
 public:
  void Build(const OperatorBase *op) {
    is_built_ = true;
    auto &inferer = op->Info().NoNeedBufferVarsInferer();
    if (inferer) {
      no_need_buffer_ins_ = inferer(op->Inputs(), op->Outputs(), op->Attrs());

      if (no_need_buffer_ins_.empty()) return;

      for (auto &in_name_pair : op->Inputs()) {
        if (no_need_buffer_ins_.count(in_name_pair.first) != 0) {
          continue;
        }

        for (auto &in_arg_name : in_name_pair.second) {
          other_args_set_.insert(in_arg_name);
        }
      }

      for (auto &out_name_pair : op->Outputs()) {
        for (auto &out_arg_name : out_name_pair.second) {
          other_args_set_.insert(out_arg_name);
        }
      }
    }
  }

  bool IsBuilt() const { return is_built_; }

  bool IsInArgBufferNeeded(const std::string &in_arg_name) const {
    return no_need_buffer_ins_.empty() ||
           other_args_set_.count(in_arg_name) != 0;
  }

 private:
S
sneaxiy 已提交
70
  // A set to record unused buffer input vars of op
S
sneaxiy 已提交
71
  std::unordered_set<std::string> no_need_buffer_ins_;
S
sneaxiy 已提交
72
  // A set to record other args of op (including in, out)
S
sneaxiy 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  std::unordered_set<std::string> other_args_set_;
  bool is_built_{false};
};

static bool VarCanBeDeleted(const std::string &name, const BlockDesc &block,
                            const std::unordered_set<std::string> &skip_vars) {
  if (skip_vars.count(name) != 0) {
    return false;
  }

  auto *var_desc = block.FindVar(name);
  if (var_desc == nullptr || var_desc->Persistable()) {
    return false;
  }

  auto type = var_desc->Proto()->type().type();

  return type == proto::VarType::LOD_TENSOR ||
         type == proto::VarType::SELECTED_ROWS ||
         type == proto::VarType::LOD_TENSOR_ARRAY;
}

95 96 97 98
std::unordered_map<const OperatorBase *, std::vector<std::string>>
GetUnusedVars(const BlockDesc &block,
              const std::vector<std::unique_ptr<OperatorBase>> &ops,
              const std::vector<std::string> &skip_var_list) {
S
sneaxiy 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  std::unordered_set<std::string> skip_vars(skip_var_list.begin(),
                                            skip_var_list.end());

  std::unordered_map<std::string, size_t> var_op_idx_map;

  for (size_t i = 0; i < ops.size(); ++i) {
    auto *op = ops[i].get();

    OpInOutInfo info;
    for (auto &name_pair : op->Inputs()) {
      for (auto &name : name_pair.second) {
        if (!VarCanBeDeleted(name, block, skip_vars)) {
          continue;
        }

        // var can be gc-ed
        if (!info.IsBuilt()) {
          info.Build(op);
        }

        if (info.IsInArgBufferNeeded(name)) {
S
sneaxiy 已提交
120
          // Update the last living op of variable to current op
S
sneaxiy 已提交
121 122 123 124 125 126 127 128 129 130 131 132
          var_op_idx_map[name] = i;
        } else {
          VLOG(10) << "Skip reference count computing of variable "
                   << name_pair.first << "(" << name << ") in Operator "
                   << op->Type();
        }
      }
    }

    for (auto &name_pair : op->Outputs()) {
      for (auto &name : name_pair.second) {
        if (VarCanBeDeleted(name, block, skip_vars)) {
S
sneaxiy 已提交
133
          // Update the last living op of variable to current op
S
sneaxiy 已提交
134 135 136 137 138 139
          var_op_idx_map[name] = i;
        }
      }
    }
  }

140
  std::unordered_map<const OperatorBase *, std::vector<std::string>> result;
S
sneaxiy 已提交
141 142 143 144 145 146 147 148
  for (auto &name_op_idx_pair : var_op_idx_map) {
    auto &name = name_op_idx_pair.first;
    size_t op_idx = name_op_idx_pair.second;
    result[ops[op_idx].get()].emplace_back(name);
  }
  return result;
}

149 150 151
void DeleteUnusedTensors(const Scope &scope,
                         const std::vector<std::string> &delete_vars,
                         GarbageCollector *gc) {
S
sneaxiy 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  std::deque<std::shared_ptr<memory::Allocation>> garbages;

  for (auto &var_name : delete_vars) {
    auto *var = scope.FindVar(var_name);
    if (var == nullptr) {
      continue;
    }

    VLOG(2) << "Erase variable " << var_name;
    if (var->IsType<LoDTensor>()) {
      garbages.emplace_back(var->GetMutable<LoDTensor>()->MoveMemoryHolder());
    } else if (var->IsType<SelectedRows>()) {
      garbages.emplace_back(
          var->GetMutable<SelectedRows>()->mutable_value()->MoveMemoryHolder());
    } else if (var->IsType<LoDTensorArray>()) {
      auto *lod_tensor_arr = var->GetMutable<LoDTensorArray>();
      for (auto &t : *lod_tensor_arr) {
        garbages.emplace_back(t.MoveMemoryHolder());
      }
    } else {
172 173 174
      PADDLE_THROW(platform::errors::Unimplemented(
          "Type %s of variable %s is not supported eager deletion.",
          framework::ToTypeName(var->Type()), var_name));
S
sneaxiy 已提交
175 176 177 178 179 180 181 182
    }
  }

  if (!garbages.empty()) {
    gc->Add(std::move(garbages));
  }
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196
void DeleteUnusedTensors(
    const Scope &scope, const OperatorBase *op,
    const std::unordered_map<const OperatorBase *, std::vector<std::string>>
        &delete_vars_map,
    GarbageCollector *gc) {
  auto iter = delete_vars_map.find(op);
  if (iter == delete_vars_map.end()) {
    return;
  }

  auto &delete_vars = iter->second;
  DeleteUnusedTensors(scope, delete_vars, gc);
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static std::vector<std::unique_ptr<OperatorBase>> CreateOpsFromBlock(
    const BlockDesc &block) {
  std::vector<std::unique_ptr<OperatorBase>> ops;
  size_t op_num = block.OpSize();
  ops.reserve(op_num);
  for (size_t i = 0; i < op_num; ++i) {
    auto *op_desc = block.Op(i);
    ops.push_back(OpRegistry::CreateOp(*op_desc));
  }
  return ops;
}

std::vector<std::vector<std::vector<std::string>>> GetEagerDeletionCleanVars(
    const ProgramDesc &origin_program,
    const std::vector<std::string> &skip_vars) {
  ProgramDesc program{origin_program};
  size_t block_num = program.Size();
  PADDLE_ENFORCE_GE(block_num, 1,
                    platform::errors::PermissionDenied(
                        "Program should have at least one block"));

  // prepare safe GCs on sub block ops
  auto global_block_ops = CreateOpsFromBlock(program.Block(0));
  operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
      program, 0, global_block_ops);
  operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(program, 0,
                                                             global_block_ops);
  operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
      program, 0, global_block_ops);

  // find the skip vars on each block
  std::vector<std::vector<std::string>> skip_vars_on_each_block(block_num);
  skip_vars_on_each_block[0] = skip_vars;
  std::vector<bool> found_skip_vars(block_num, false);
  found_skip_vars[0] = true;

  const char *kSubBlock = "sub_block";
  const char *kSkipEagerDeletionVars = "skip_eager_deletion_vars";

  for (size_t i = 0; i < block_num; ++i) {
    const auto &block = program.Block(i);
    size_t op_num = block.OpSize();
    for (size_t j = 0; j < op_num; ++j) {
      auto *op = block.Op(j);
      if (!op->HasAttr(kSubBlock) || !op->HasAttr(kSkipEagerDeletionVars)) {
        continue;
      }
      auto sub_block_id = op->GetAttrIfExists<BlockDesc *>(kSubBlock)->ID();
      PADDLE_ENFORCE_GE(sub_block_id, 0,
                        platform::errors::PermissionDenied(
                            "sub_block id must be non-negative number"));
      PADDLE_ENFORCE_LT(sub_block_id, block_num,
                        platform::errors::PermissionDenied(
                            "sub_block id exceeds max block num"));
      PADDLE_ENFORCE_EQ(
          found_skip_vars[sub_block_id], false,
          platform::errors::PermissionDenied(
              "there are 2 ops which refer to the same sub_block %d",
              sub_block_id));

      found_skip_vars[sub_block_id] = true;
      auto sub_block_skip_vars =
          op->GetAttrIfExists<std::vector<std::string>>(kSkipEagerDeletionVars);
      skip_vars_on_each_block[sub_block_id] = std::move(sub_block_skip_vars);
    }
  }

  std::vector<std::vector<std::vector<std::string>>> result;
  result.reserve(block_num);
  for (size_t i = 0; i < block_num; ++i) {
    const auto &block = program.Block(i);
    const auto block_ops = CreateOpsFromBlock(block);
    const auto &block_skip_vars = skip_vars_on_each_block[i];
    auto delete_var_map = GetUnusedVars(block, block_ops, block_skip_vars);
    std::vector<std::vector<std::string>> block_result;
    block_result.reserve(block_ops.size());
    for (const auto &op : block_ops) {
      auto &delete_vars = delete_var_map[op.get()];
      std::sort(delete_vars.begin(), delete_vars.end());  // for stable result
      block_result.emplace_back(delete_vars);
    }
    result.emplace_back(std::move(block_result));
  }
  return result;
}

S
sneaxiy 已提交
283 284
}  // namespace framework
}  // namespace paddle