hierarchical-rnn.txt 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
# 双层RNN配置与示例

我们在`paddle/gserver/tests/test_RecurrentGradientMachine`单测中,通过多组语义相同的单双层RNN配置,讲解如何使用双层RNN。

## 示例1:双进双出,subseq间无memory

配置:单层RNN(`sequence_layer_group`)和双层RNN(`sequence_nest_layer_group`),语义完全相同。

### 读取双层序列的方法

首先,我们看一下单双层序列的不同数据组织形式(您也可以采用别的组织形式):

- 单层序列的数据(`Sequence/tour_train_wdseg`)如下,一共有10个样本。每个样本由两部分组成,一个label(此处都为2)和一个已经分词后的句子。

```text
2  	酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
2  	很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
2  	位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
2  	交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
2  	本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
2  	这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
2  	挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
2  	HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
2  	酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
2  	挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
```

- 双层序列的数据(`Sequence/tour_train_wdseg.nest`)如下,一共有4个样本。样本间用空行分开,代表不同的双层序列,序列数据和上面的完全一样。每个样本的子句数分别为2,3,2,3。

```text
2  	酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
2  	很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *

2  	位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
2  	交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
2  	本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .

2  	这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
2  	挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !

2  	HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
2  	酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
2  	挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
```

其次,我们看一下单双层序列的不同dataprovider(见`sequenceGen.py`):

- 单层序列的dataprovider如下:
  - word_slot是integer_value_sequence类型,代表单层序列。
  - label是integer_value类型,代表一个向量。

```python
def hook(settings, dict_file, **kwargs):
    settings.word_dict = dict_file
    settings.input_types = [integer_value_sequence(len(settings.word_dict)), 
                            integer_value(3)]

@provider(init_hook=hook)
def process(settings, file_name):
    with open(file_name, 'r') as fdata:
        for line in fdata:
            label, comment = line.strip().split('\t')
            label = int(''.join(label.split()))
            words = comment.split()
            word_slot = [settings.word_dict[w] for w in words if w in settings.word_dict]
            yield word_slot, label
```

- 双层序列的dataprovider如下:
  - word_slot是integer_value_sub_sequence类型,代表双层序列。
  - label是integer_value_sequence类型,代表单层序列,即一个子句一个label。注意:也可以为integer_value类型,代表一个向量,即一个句子一个label。通常根据任务需求进行不同设置。
  - 关于dataprovider中input_types的详细用法,参见PyDataProvider2。

```python
def hook2(settings, dict_file, **kwargs):
    settings.word_dict = dict_file
    settings.input_types = [integer_value_sub_sequence(len(settings.word_dict)),
                            integer_value_sequence(3)]

@provider(init_hook=hook2)
def process2(settings, file_name):
    with open(file_name) as fdata:
        label_list = []
        word_slot_list = []
        for line in fdata:
            if (len(line)) > 1:
                label,comment = line.strip().split('\t')
                label = int(''.join(label.split()))
                words = comment.split()
                word_slot = [settings.word_dict[w] for w in words if w in settings.word_dict]
                label_list.append(label)
                word_slot_list.append(word_slot)
            else:
                yield word_slot_list, label_list
                label_list = []
                word_slot_list = []
```

### 模型中的配置

首先,我们看一下单层序列的配置(见`sequence_layer_group.conf`)。注意:batchsize=5表示一次过5句单层序列,因此2个batch就可以完成1个pass。

```python
settings(batch_size=5)

data = data_layer(name="word", size=dict_dim)

emb = embedding_layer(input=data, size=word_dim)

# (lstm_input + lstm) is equal to lstmemory 
with mixed_layer(size=hidden_dim*4) as lstm_input:
    lstm_input += full_matrix_projection(input=emb)

lstm = lstmemory_group(input=lstm_input,
                       size=hidden_dim,
                       act=TanhActivation(),
                       gate_act=SigmoidActivation(),
                       state_act=TanhActivation(),
                       lstm_layer_attr=ExtraLayerAttribute(error_clipping_threshold=50))

lstm_last = last_seq(input=lstm)

with mixed_layer(size=label_dim, 
                 act=SoftmaxActivation(), 
                 bias_attr=True) as output:
    output += full_matrix_projection(input=lstm_last)

outputs(classification_cost(input=output, label=data_layer(name="label", size=1)))

```
其次,我们看一下语义相同的双层序列配置(见`sequence_nest_layer_group.conf`),并对其详细分析:

- batchsize=2表示一次过2句双层序列。但从上面的数据格式可知,2句双层序列和5句单层序列的数据完全一样。
- data_layer和embedding_layer不关心数据是否是序列格式,因此两个配置在这两层上的输出是一样的。
- lstmemory:
  - 单层序列过了一个mixed_layer和lstmemory_group。
  - 双层序列在同样的mixed_layer和lstmemory_group外,直接加了一层group。由于这个外层group里面没有memory,表示subseq间不存在联系,即起到的作用仅仅是把双层seq拆成单层,因此双层序列过完lstmemory的输出和单层的一样。
- last_seq:
  - 单层序列直接取了最后一个元素
  - 双层序列首先(last_seq层)取了每个subseq的最后一个元素,将其拼接成一个新的单层序列;接着(expand_layer层)将其扩展成一个新的双层序列,其中第i个subseq中的所有向量均为输入的单层序列中的第i个向量;最后(average_layer层)取了每个subseq的平均值。
  - 分析得出:第一个last_seq后,每个subseq的最后一个元素就等于单层序列的最后一个元素,而expand_layer和average_layer后,依然保持每个subseq最后一个元素的值不变(这两层仅是为了展示它们的用法,实际中并不需要)。因此单双层序列的输出是一样旳。

```python
settings(batch_size=2)

data = data_layer(name="word", size=dict_dim)

emb_group = embedding_layer(input=data, size=word_dim)

# (lstm_input + lstm) is equal to lstmemory 
def lstm_group(lstm_group_input):
    with mixed_layer(size=hidden_dim*4) as group_input:
      group_input += full_matrix_projection(input=lstm_group_input)

    lstm_output = lstmemory_group(input=group_input,
                                  name="lstm_group",
                                  size=hidden_dim,
                                  act=TanhActivation(),
                                  gate_act=SigmoidActivation(),
                                  state_act=TanhActivation(),
                                  lstm_layer_attr=ExtraLayerAttribute(error_clipping_threshold=50))
    return lstm_output

lstm_nest_group = recurrent_group(input=SubsequenceInput(emb_group),
                                  step=lstm_group,
                                  name="lstm_nest_group")
# hasSubseq ->(seqlastins) seq
lstm_last = last_seq(input=lstm_nest_group, agg_level=AggregateLevel.EACH_SEQUENCE)

# seq ->(expand) hasSubseq
lstm_expand = expand_layer(input=lstm_last, expand_as=emb_group, expand_level=ExpandLevel.FROM_SEQUENCE)

# hasSubseq ->(average) seq
lstm_average = pooling_layer(input=lstm_expand,
                             pooling_type=AvgPooling(),
                             agg_level=AggregateLevel.EACH_SEQUENCE)

with mixed_layer(size=label_dim, 
                 act=SoftmaxActivation(), 
                 bias_attr=True) as output:
    output += full_matrix_projection(input=lstm_average)

outputs(classification_cost(input=output, label=data_layer(name="label", size=1)))
```
## 示例2:双进双出,subseq间有memory

配置:单层RNN(`sequence_rnn.conf`),双层RNN(`sequence_nest_rnn.conf`和`sequence_nest_rnn_readonly_memory.conf`),语义完全相同。

### 读取双层序列的方法

我们看一下单双层序列的不同数据组织形式和dataprovider(见`rnn_data_provider.py`)
```python
data = [
    [[[1, 3, 2], [4, 5, 2]], 0],
    [[[0, 2], [2, 5], [0, 1, 2]], 1],
]

@provider(input_types=[integer_value_sub_sequence(10),
                       integer_value(3)])
def process_subseq(settings, file_name):
    for d in data:
        yield d

@provider(input_types=[integer_value_sequence(10),
                       integer_value(3)])
def process_seq(settings, file_name):
    for d in data:
        seq = []
```
- 单层序列:有两句,分别为[1,3,2,4,5,2]和[0,2,2,5,0,1,2]。
- 双层序列:有两句,分别为[[1,3,2],[4,5,2]](2个子句)和[[0,2],[2,5],[0,1,2]](3个子句)。
- 单双层序列的label都分别是0和1

### 模型中的配置

我们选取单双层序列配置中的不同部分,来对比分析两者语义相同的原因。

- 单层序列:过了一个很简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全链接。

```python
def step(y):
    mem = memory(name="rnn_state", size=hidden_dim)
    return fc_layer(input=[y, mem],
                    size=hidden_dim,
                    act=TanhActivation(),
                    bias_attr=True,
                    name="rnn_state")

out = recurrent_group(step=step, input=emb)
```
- 双层序列,外层memory是一个元素:
  - 内层inner_step的recurrent_group和单层序列的几乎一样。除了boot_layer=outer_mem,表示将外层的outer_mem作为内层memory的初始状态。外层outer_step中,outer_mem是一个子句的最后一个向量,即整个双层group是将前一个子句的最后一个向量,作为下一个子句memory的初始状态。
  - 从输入数据上看,单双层序列的句子是一样的,只是双层序列将其又做了子序列划分。因此双层序列的配置中,必须将前一个子句的最后一个元素,作为boot_layer传给下一个子句的memory,才能保证和单层序列的配置中“每一个时间步都用了上一个时间步的输出结果”一致。

```python
def outer_step(x):
    outer_mem = memory(name="outer_rnn_state", size=hidden_dim)
    def inner_step(y):
        inner_mem = memory(name="inner_rnn_state",
                           size=hidden_dim,
                           boot_layer=outer_mem)
        return fc_layer(input=[y, inner_mem],
                        size=hidden_dim,
                        act=TanhActivation(),
                        bias_attr=True,
                        name="inner_rnn_state")

    inner_rnn_output = recurrent_group(
        step=inner_step,
        input=x)
    last = last_seq(input=inner_rnn_output, name="outer_rnn_state")

    return inner_rnn_output

out = recurrent_group(step=outer_step, input=SubsequenceInput(emb))
```
- 双层序列,外层memory是单层序列:
  - 由于外层每个时间步返回的是一个子句,这些子句的长度往往不等长。因此当外层有is_seq=True的memory时,内层是**无法直接使用**它的,即内层memory的boot_layer不能链接外层的这个memory。
  - 如果内层memory想**间接使用**这个外层memory,只能通过`pooling_layer`、`last_seq`或`first_seq`这三个layer将它先变成一个元素。但这种情况下,外层memory必须有boot_layer,否则在第0个时间步时,由于外层memory没有任何seq信息,因此上述三个layer的前向会报出“**Check failed: input.sequenceStartPositions**”的错误。

## 示例3:双进双出,输入不等长

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
**输入不等长**是指recurrent_group的多个输入在各时刻的长度可以不相等, 但需要指定一个和输出长度一致的input,用<font color="red">targetInlink</font>表示。参考配置:单层RNN(`sequence_rnn_multi_unequalength_inputs.conf`),双层RNN(`sequence_nest_rnn_multi_unequalength_inputs.conf`)

### 读取双层序列的方法

我们看一下单双层序列的数据组织形式和dataprovider(见`rnn_data_provider.py`)
```python
data2 = [
    [[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]] ,0],
    [[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]], 1],
]

@provider(input_types=[integer_value_sub_sequence(10),
                       integer_value_sub_sequence(10),
                       integer_value(2)],
          should_shuffle=False)
def process_unequalength_subseq(settings, file_name): #双层RNN的dataprovider
    for d in data2:
        yield d


@provider(input_types=[integer_value_sequence(10),
                       integer_value_sequence(10),
                       integer_value(2)],
          should_shuffle=False)
def process_unequalength_seq(settings, file_name): #单层RNN的dataprovider
    for d in data2:
        words1=reduce(lambda x,y: x+y, d[0])
        words2=reduce(lambda x,y: x+y, d[1])
        yield words1, words2, d[2]
```

data2 中有两个样本,每个样本有两个特征, 记fea1, fea2。

- 单层序列:两个样本分别为[[1, 2, 4, 5, 2], [5, 4, 1, 3, 1]] 和 [[0, 2, 2, 5, 0, 1, 2], [1, 5, 4, 2, 3, 6, 1]]
- 双层序列:两个样本分别为
  - **样本1**:[[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]]]。fea1和fea2都分别有2个子句,fea1=[[1, 2], [4, 5, 2]], fea2=[[5, 4, 1], [3, 1]]
  - **样本2**:[[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]]]。fea1和fea2都分别有3个子句, fea1=[[0, 2], [2, 5], [0, 1, 2]], fea2=[[1, 5], [4], [2, 3, 6, 1]]。<br/>
  - **注意**:每个样本中,各特征的子句数目需要相等。这里说的“双进双出,输入不等长”是指fea1在i时刻的输入的长度可以不等于fea2在i时刻的输入的长度。如对于第1个样本,时刻i=2, fea1[2]=[4, 5, 2],fea2[2]=[3, 1],3≠2。
- 单双层序列中,两个样本的label都分别是0和1

### 模型中的配置

单层RNN(`sequence_rnn_multi_unequalength_inputs.conf`)和双层RNN(`sequence_nest_rnn_multi_unequalength_inputs.conf`)两个模型配置达到的效果完全一样,区别只在于输入为单层还是双层序列,现在我们来看它们内部分别是如何实现的。

- 单层序列:
  - 过了一个简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全连接,功能与示例2中`sequence_rnn.conf`的`step`函数完全相同。这里,两个输入x1,x2分别通过calrnn返回最后时刻的状态。结果得到的encoder1_rep和encoder2_rep分别是单层序列,最后取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。
  - 注意到这里recurrent_group输入的每个样本中,fea1和fea2的长度都分别相等,这并非偶然,而是因为recurrent_group要求输入为单层序列时,所有输入的长度都必须相等。

```python
def step(x1, x2):
	def calrnn(y):
		mem = memory(name = 'rnn_state_' + y.name, size = hidden_dim)
        out = fc_layer(input = [y, mem],
	        size = hidden_dim,
	        act = TanhActivation(),
            bias_attr = True,
            name = 'rnn_state_' + y.name)
        return out

	encoder1 = calrnn(x1)
    encoder2 = calrnn(x2)
    return [encoder1, encoder2]
    
encoder1_rep, encoder2_rep = recurrent_group(
    name="stepout",                           
    step=step,
    input=[emb1, emb2])

encoder1_last = last_seq(input = encoder1_rep)                           
encoder1_expandlast = expand_layer(input = encoder1_last,
                                   expand_as = encoder2_rep)
context = mixed_layer(input = [identity_projection(encoder1_expandlast),
                               identity_projection(encoder2_rep)],
                      size = hidden_dim)
```
- 双层序列:
  - 双层RNN中,对输入的两个特征分别求时序上的连续全连接(`inner_step1`和`inner_step2`分别处理fea1和fea2),其功能与示例2中`sequence_nest_rnn.conf`的`outer_step`函数完全相同。不同之处是,此时输入`[SubsequenceInput(emb1), SubsequenceInput(emb2)]`在各时刻并不等长。
  - 函数`outer_step`中可以分别处理这两个特征,但我们需要用<font color=red>targetInlink</font>指定recurrent_group的输出的格式(各子句长度)只能和其中一个保持一致,如这里选择了和emb2的长度一致。
  - 最后,依然是取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。

```python
def outer_step(x1, x2):
    outer_mem1 = memory(name = "outer_rnn_state1", size = hidden_dim)
    outer_mem2 = memory(name = "outer_rnn_state2", size = hidden_dim)
    def inner_step1(y):
        inner_mem = memory(name = 'inner_rnn_state_' + y.name,
                           size = hidden_dim,
                           boot_layer = outer_mem1)
        out = fc_layer(input = [y, inner_mem],
                       size = hidden_dim,
                       act = TanhActivation(),
                       bias_attr = True,
                       name = 'inner_rnn_state_' + y.name)
        return out

    def inner_step2(y):
        inner_mem = memory(name = 'inner_rnn_state_' + y.name,
                           size = hidden_dim,
                           boot_layer = outer_mem2)
        out = fc_layer(input = [y, inner_mem],
                       size = hidden_dim,
                       act = TanhActivation(),
                       bias_attr = True,
                       name = 'inner_rnn_state_' + y.name)
        return out

    encoder1 = recurrent_group(
        step = inner_step1,
        name = 'inner1',
        input = x1)

    encoder2 = recurrent_group(
        step = inner_step2,
        name = 'inner2',
        input = x2)

    sentence_last_state1 = last_seq(input = encoder1, name = 'outer_rnn_state1')
    sentence_last_state2_ = last_seq(input = encoder2, name = 'outer_rnn_state2')

    encoder1_expand = expand_layer(input = sentence_last_state1,
                                   expand_as = encoder2)

    return [encoder1_expand, encoder2]

encoder1_rep, encoder2_rep = recurrent_group(
    name="outer",
    step=outer_step,
    input=[SubsequenceInput(emb1), SubsequenceInput(emb2)],
    targetInlink=emb2)

encoder1_last = last_seq(input = encoder1_rep)
encoder1_expandlast = expand_layer(input = encoder1_last,
                                   expand_as = encoder2_rep)
context = mixed_layer(input = [identity_projection(encoder1_expandlast),
                               identity_projection(encoder2_rep)],
                      size = hidden_dim)
```
400 401 402 403

## 示例4:beam_search的生成

TBD