group.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import warnings
16

17
import paddle
18
import paddle.distributed as dist
19 20 21
import paddle.fluid.core as core
import paddle.fluid.framework as framework
import paddle.fluid.layer_helper as layer_helper
22
from paddle.fluid.framework import in_dygraph_mode
23

24

25
class Group:
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    """
    The abstract representation of group.
    """

    def __init__(self, rank_in_group, id, ranks, pg=None, name=None):
        self._rank_in_group = rank_in_group
        self._world_size = len(ranks) if rank_in_group >= 0 else -1
        self._id = id
        self._ranks = ranks
        self._pg = pg
        self._name = name

    @property
    def rank(self):
        return self._rank_in_group

    @property
    def ranks(self):
        return self._ranks

    @property
    def nranks(self):
        return len(self._ranks)

    @property
    def name(self):
        return self._name

    @property
    def process_group(self):
        return self._pg

    @property
    def world_size(self):
        return self._world_size

62 63 64 65
    @property
    def backend(self):
        return self._pg.name()

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    @property
    def id(self):
        return self._id

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.is_member():
            return self.ranks.index(rank)
        else:
            return -1

    def __repr__(self):
        debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format(
85 86
            self.rank, self.nranks, self.id
        )
87 88 89 90 91 92
        debug_str += ", ".join(map(str, self.ranks))
        debug_str += "; name: "
        debug_str += self.name if self.name else "None"
        return debug_str


93
class _GroupManager:
94 95 96 97 98 99 100 101 102 103 104 105
    global_group_id = 0
    group_map_by_id = {}


def _get_global_group():
    if _GroupManager.global_group_id not in _GroupManager.group_map_by_id:
        raise RuntimeError("The global group is not initialized.")
    return _GroupManager.group_map_by_id[_GroupManager.global_group_id]


def _add_new_group(group):
    if group.id in _GroupManager.group_map_by_id:
106 107 108
        raise RuntimeError(
            "The group with id {} already exist.".format(group.id)
        )
109
    _GroupManager.group_map_by_id[group.id] = group
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235


def _is_global_group(group):
    return group.id == _GroupManager.global_group_id


def _warn_cur_rank_not_in_group(group):
    global_rank = dist.get_rank()
    if group and not group.is_member():
        warnings.warn(
            "Current global rank {} is not in group {}".format(
                global_rank, group.name
            )
        )
        return True
    return False


def _get_or_throw_group_rank(global_rank, group):
    group_rank = group.get_group_rank(global_rank)
    assert (
        group_rank >= 0
    ), "The input rank {} can not be found inside the group {}".format(
        global_rank, group.name
    )
    return group_rank


def is_initialized():
    """

    Check whether the distributed environment has been initialized

    Returns:
        `True` if distributed environment has been initialized, otherwise `False`.

    Warning:
        This API only supports the dygraph mode.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle

            print(paddle.distributed.is_initialized())
            # False

            paddle.distributed.init_parallel_env()
            print(paddle.distributed.is_initialized())
            # True

    """
    return _GroupManager.global_group_id in _GroupManager.group_map_by_id


def destroy_process_group(group=None):
    """
    Destroy a given group for communication

    Args:
        group (Group, optional): The group to be destroyed. All of process groups, including
                                        the default group, will be destroyed and the distributed
                                        environment will be deinitialized.

    Returns : None

    Warning:
        This API only supports the dygraph mode.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            group = dist.new_group([0, 1])

            dist.destroy_process_group(group)
            print(dist.is_initialized())
            # True
            dist.destroy_process_group()
            print(dist.is_initialized())
            # False

    """
    group = _get_global_group() if group is None else group
    assert (
        group.id in _GroupManager.group_map_by_id
    ), "Destroy group with id {} is invalid.".format(group.id)
    if _is_global_group(group):
        _GroupManager.group_map_by_id.clear()
    else:
        del _GroupManager.group_map_by_id[group.id]


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
        id (int): the group id. Default value is 0.

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    if id in _GroupManager.group_map_by_id:
        return _GroupManager.group_map_by_id[id]
    warnings.warn("Group {} is not initialized.".format(id))
    return None
236 237 238


def _sync_calc_stream(tensor):
239
    if in_dygraph_mode():
240
        return paddle._legacy_C_ops.c_sync_calc_stream(tensor, tensor)
241 242 243 244 245 246 247 248
    else:
        op_type = 'c_sync_calc_stream'
        helper = layer_helper.LayerHelper(op_type, **locals())
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [tensor]},
        )
249 250 251


def _sync_comm_stream(tensor, ring_id=0):
252
    if in_dygraph_mode():
253 254 255
        return paddle._legacy_C_ops.c_sync_comm_stream(
            [tensor], [tensor], 'ring_id', ring_id
        )
256 257 258 259 260 261 262 263 264
    else:
        op_type = 'c_sync_comm_stream'
        helper = layer_helper.LayerHelper(op_type, **locals())
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [tensor]},
            attrs={'ring_id': ring_id},
        )
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339


def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
            tindata = paddle.randn(shape=[2, 3])
            paddle.distributed.all_reduce(tindata, sync_op=True)
            paddle.distributed.wait(tindata)

    """
    if group is not None and not group.is_member():
        return

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        ring_id = 0 if group is None else group.id
        _sync_comm_stream(tensor, ring_id)


def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

    if framework.in_dygraph_mode():
        group = _get_global_group() if group is None else group
        place = framework._current_expected_place()
        if isinstance(place, core.CPUPlace):
            task = group.process_group.barrier()
        else:
            device_id = place.get_device_id()
            task = group.process_group.barrier(device_id)
        task.wait()
        return

    ring_id = 0 if group is None else group.id

    barrier_tensor = paddle.full([1], 1, dtype="int32")
340
    if in_dygraph_mode():
341 342 343
        return paddle._legacy_C_ops.barrier(
            barrier_tensor, barrier_tensor, 'ring_id', ring_id
        )
344 345 346 347 348 349 350 351 352 353 354
    else:
        op_type = 'barrier'
        if not isinstance(ring_id, int):
            raise ValueError("The type of 'group' for barrier must be int.")
        helper = layer_helper.LayerHelper(op_type, **locals())
        helper.append_op(
            type=op_type,
            inputs={'X': [barrier_tensor]},
            outputs={'Out': [barrier_tensor]},
            attrs={'ring_id': ring_id},
        )