test_concat_op.py 2.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21


22
class TestConcatOp(OpTest):
23
    def setUp(self):
24
        self.op_type = "concat"
C
chengduoZH 已提交
25 26 27 28 29 30 31
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
        self.outputs = {
            'Out': np.concatenate(
                (self.x0, self.x1, self.x2), axis=self.axis)
        }
32

33 34 35
    def test_check_output(self):
        self.check_output()

36 37
    def test_check_grad(self):
        self.check_grad(['x0'], 'Out')
C
chengduoZH 已提交
38 39 40 41 42 43 44 45 46 47
        self.check_grad(['x1'], 'Out')
        self.check_grad(['x2'], 'Out')

    def init_test_data(self):
        self.x0 = np.random.random((2, 1, 4, 5)).astype('float32')
        self.x1 = np.random.random((2, 2, 4, 5)).astype('float32')
        self.x2 = np.random.random((2, 3, 4, 5)).astype('float32')
        self.axis = 1


48
class TestConcatOp2(TestConcatOp):
C
chengduoZH 已提交
49 50 51 52 53
    def init_test_data(self):
        self.x0 = np.random.random((2, 3, 4, 5)).astype('float32')
        self.x1 = np.random.random((2, 3, 4, 5)).astype('float32')
        self.x2 = np.random.random((2, 3, 4, 5)).astype('float32')
        self.axis = 1
54

55

56 57 58 59 60 61 62 63 64 65 66
class TestConcatOp3(TestConcatOp):
    def init_test_data(self):
        self.x0 = np.random.random((1, 256, 170, 256)).astype('float32')
        self.x1 = np.random.random((1, 128, 170, 256)).astype('float32')
        self.x2 = np.random.random((1, 128, 170, 256)).astype('float32')
        self.axis = 1

    def test_check_grad(self):
        pass


67 68 69 70 71 72 73 74 75 76 77
class TestConcatOp4(TestConcatOp):
    def init_test_data(self):
        self.x0 = np.random.random((2, 3, 4, 5)).astype('float32')
        self.x1 = np.random.random((2, 3, 4, 5)).astype('float32')
        self.x2 = np.random.random((0, 3, 4, 5)).astype('float32')
        self.axis = 0

    def test_check_grad(self):
        pass


78 79
if __name__ == '__main__':
    unittest.main()