sequence_pad_op.cc 11.1 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pad_op.h"
16 17
#include <memory>
#include <string>
Y
yangyaming 已提交
18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

class SequencePadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
 protected:
Y
yangyaming 已提交
27
  void InferShape(framework::InferShapeContext* ctx) const override {
28
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
29 30 31 32 33 34
                      platform::errors::NotFound(
                          "Input(X) of SequencePadOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("PadValue"), true,
        platform::errors::NotFound(
            "Input(PadValue) of SequencePadOp should not be null."));
35
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
36 37 38 39 40 41
                      platform::errors::NotFound(
                          "Output(Out) of SequencePadOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Length"), true,
        platform::errors::NotFound(
            "Output(Length) of SequencePadOp should not be null."));
Y
yangyaming 已提交
42 43

    auto x_dims = ctx->GetInputDim("X");
44
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
45 46 47 48
                      platform::errors::InvalidArgument(
                          "The rank of SequencePadOp Input(X) can't be less "
                          "than 2. But the rank we received is %d",
                          x_dims.size()));
49 50
    auto time_step_dims = framework::slice_ddim(x_dims, 1, x_dims.size());
    auto pad_value_dims = ctx->GetInputDim("PadValue");
51 52 53 54 55 56 57
    PADDLE_ENFORCE_EQ(
        pad_value_dims == framework::make_ddim({1}) ||
            pad_value_dims == time_step_dims,
        true,
        platform::errors::InvalidArgument(
            "The SequencePadOp Input(PadValue) must be a scalar or a tensor "
            "whose shape equals to time steps in sequences"));
Y
yangyaming 已提交
58

F
fengjiayi 已提交
59
    int out_dim_0 = -1;
Y
yangyaming 已提交
60

61
    int padded_length = ctx->Attrs().Get<int>("padded_length");
Y
yangyaming 已提交
62
    if (ctx->IsRuntime()) {
63
      // run time
Y
yangyaming 已提交
64
      framework::Variable* x_var =
65
          BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("X")[0]);
66
      const auto& x_lod = x_var->Get<LoDTensor>().lod();
67
      PADDLE_ENFORCE_EQ(x_lod.empty(), false,
68 69
                        platform::errors::NotFound(
                            "The SequencePadOp Input(X) must hold lod info."));
70
      const auto& x_lod_0 = x_lod[0];
71 72 73 74 75 76 77 78 79 80 81 82 83
      PADDLE_ENFORCE_GE(
          x_lod_0.size(), 2,
          platform::errors::InvalidArgument(
              "The size of SequencePadOp Input(X)'s lod info can't be less "
              "than 2. But the size we received is %d",
              x_lod_0.size()));
      PADDLE_ENFORCE_EQ(x_dims[0], static_cast<int64_t>(x_lod_0.back()),
                        platform::errors::InvalidArgument(
                            "The SequencePadOp Input(X)'s lod info mismatches "
                            "the actual tensor shape. The 1st dimension of "
                            "Input(X)'s lod info is %d, the 1st dimension of "
                            "actual tensor shape is %d",
                            x_dims[0], static_cast<int64_t>(x_lod_0.back())));
84 85 86 87 88

      int seq_num = x_lod_0.size() - 1;
      int max_seq_len = math::MaximumSequenceLength(x_lod_0);
      if (padded_length == -1) {
        padded_length = max_seq_len;
Y
yangyaming 已提交
89
      }
90 91 92 93 94 95 96 97 98
      PADDLE_ENFORCE_GE(
          padded_length, max_seq_len,
          platform::errors::InvalidArgument(
              "The SequencePadOp Attr(padded_length) should be greater than or "
              "equal to the "
              "length of the longest original sequence. But the padded_length "
              "we received is %d, the length of the longest original sequence "
              "is %d",
              padded_length, max_seq_len));
F
fengjiayi 已提交
99
      out_dim_0 = seq_num;
Y
yangyaming 已提交
100
    } else {
101
      // compile time
102 103 104
      if (padded_length == -1) {
        padded_length = 1;
      }
105 106
      PADDLE_ENFORCE_GT(
          ctx->GetLoDLevel("X"), 0,
107 108 109 110
          platform::errors::InvalidArgument(
              "The LoD level of SequencePadOp Input(X) should be "
              "larger than 0. But the LoD level we received is %d",
              ctx->GetLoDLevel("X")));
Y
yangyaming 已提交
111 112
    }

113
    std::vector<int> out_dims_vec{out_dim_0, padded_length};
114
    std::vector<int> len_dims_vec{out_dim_0};
115
    auto time_step_dims_vec = framework::vectorize<int>(time_step_dims);
F
fengjiayi 已提交
116 117 118
    out_dims_vec.insert(out_dims_vec.end(), time_step_dims_vec.begin(),
                        time_step_dims_vec.end());
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
119 120 121 122 123 124
    ctx->SetOutputDim("Length", framework::make_ddim(len_dims_vec));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
125
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
126
    return framework::OpKernelType(data_type, ctx.device_context());
Y
yangyaming 已提交
127 128 129 130 131
  }
};

class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
132
  void Make() override {
Y
yangyaming 已提交
133 134
    AddInput("X",
             "(LoDTensor, default LoDTensor<float>) Input variable which "
135 136 137 138 139 140 141 142 143
             "should contain lod information.");
    AddInput("PadValue",
             "(LoDTensor), this Tensor holds values that will be fill into "
             "padded steps. It can be a scalar or a tensor whose shape equals "
             "to time steps in sequences. If it's a scalar, it will be "
             "automatically broadcasted to the shape of time step.");
    AddOutput(
        "Out",
        "(LoDTensor) The output vairable, which contains padded sequences.");
144 145 146 147
    AddOutput(
        "Length",
        "(LoDTensor) The output vairable, which contains the actual length of "
        "sequences before padding.");
148 149
    AddAttr<int>(
        "padded_length",
T
tianshuo78520a 已提交
150
        "The length of padded sequences. It can be set to -1 or "
151 152 153 154 155
        "any positive int. When it is -1, all sequences will be padded up to "
        "the length of the longest one among them; when it a certain positive "
        "value, it must be greater than the length of the longest original "
        "sequence.")
        .SetDefault(-1);
Y
yangyaming 已提交
156
    AddComment(R"DOC(
F
fengjiayi 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
      Sequence Pad Operator

      This operator pads sequences in a same batch to a consistent length. 
      The length is specified by attribute 'padded_length'. New elements, 
      whose values are specified by input 'PadValue', will be appended to 
      the end of each sequence, to make their final lengths consistent.

      Following are cases to better explain how this works:

      Case 1:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0, 2,       5]]
          X.data = [a, b, c, d, e]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = 4,
F
fengjiayi 已提交
174 175 176
      then we get LoDTensor:
          Out.data = [[a, b, 0, 0], 
                      [c, d, e, 0]]
177
          Length.data = [2, 3]
F
fengjiayi 已提交
178 179 180 181 182 183 184 185 186 187
      
      Case 2:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
F
fengjiayi 已提交
188 189 190
      then we get LoDTensor:
          Out.data = [[[a1, a2], [b1, b2], [0, 0]], 
                      [[c1, c2], [d1, d2], [e1, e2]]]
191
          Length.data = [2, 3]
192
 
F
fengjiayi 已提交
193 194 195 196 197 198 199 200 201
      Case 3:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [p1, p2]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
F
fengjiayi 已提交
202 203 204
      then we get LoDTensor:
          Out.data = [[[a1, a2], [b1, b2], [p1, p2]], 
                      [[c1, c2], [d1, d2], [e1, e2]]]
205
          Length.data = [2, 3]
Y
yangyaming 已提交
206 207 208 209 210 211 212 213 214 215

    )DOC");
  }
};

class SequencePadGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
216
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
217 218
                      platform::errors::NotFound(
                          "Input(X) of SequencePadGradOp should not be null."));
219 220
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
221 222
        platform::errors::NotFound(
            "Input(Out@GRAD) of SequencePadGradOp should not be null."));
Y
yangyaming 已提交
223 224 225 226 227 228

    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
    }
  }
229 230 231 232

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
233 234
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
235 236
    return framework::OpKernelType(data_type, ctx.device_context());
  }
Y
yangyaming 已提交
237 238
};

H
hong 已提交
239 240
template <typename T>
class SequencePadGradOpMaker : public framework::SingleGradOpMaker<T> {
241
 public:
H
hong 已提交
242
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
243 244

 protected:
245
  void Apply(GradOpPtr<T> op) const override {
246
    op->SetType("sequence_pad_grad");
H
hong 已提交
247 248 249 250
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
251 252 253
  }
};

254
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SequencePadGradOpNoNeedBufferVarsInferer,
255
                                    "X");
256

Y
yangyaming 已提交
257 258 259 260 261
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_pad, ops::SequencePadOp, ops::SequencePadOpMaker,
H
hong 已提交
262 263
                  ops::SequencePadGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequencePadGradOpMaker<paddle::imperative::OpBase>);
264
REGISTER_OPERATOR(sequence_pad_grad, ops::SequencePadGradOp,
265
                  ops::SequencePadGradOpNoNeedBufferVarsInferer);
Y
yangyaming 已提交
266 267 268 269 270 271 272 273 274 275 276 277
REGISTER_OP_CPU_KERNEL(
    sequence_pad,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    sequence_pad_grad,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int64_t>);