argsort_op.cc 5.4 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/argsort_op.h"
16
#include <memory>
Y
Yibing Liu 已提交
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class ArgsortOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
26 27 28
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "argsort");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "argsort");
    OP_INOUT_CHECK(ctx->HasOutput("Indices"), "Output", "Indices", "argsort");
Y
Yibing Liu 已提交
29 30

    auto in_dims = ctx->GetInputDim("X");
Y
Yibing Liu 已提交
31
    int axis = ctx->Attrs().Get<int>("axis");
Y
Yibing Liu 已提交
32 33

    auto num_dims = in_dims.size();
34 35 36 37 38 39 40 41 42
    PADDLE_ENFORCE_GE(axis, -num_dims,
                      platform::errors::InvalidArgument(
                          "'axis'(%d) must be greater than or equal to"
                          " -num_dims(%d).",
                          axis, -num_dims));
    PADDLE_ENFORCE_LT(
        axis, num_dims,
        platform::errors::InvalidArgument(
            "'axis'(%d) must be less than num_dims(%d).", axis, num_dims));
Y
Yibing Liu 已提交
43

44 45
    ctx->ShareDim("X", "Out");
    ctx->ShareDim("X", "Indices");
Y
Yibing Liu 已提交
46 47 48 49 50
    ctx->ShareLoD("X", "Out");
    ctx->ShareLoD("X", "Indices");
  }
};

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
class ArgsortGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*-->*/ framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

Y
Yibing Liu 已提交
69 70 71 72
class ArgsortOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) The input of Argsort op.");
73 74 75
    AddOutput("Out",
              "(Tensor) The sorted tensor of Argsort op, with the same "
              "shape as Input(X).");
Y
Yibing Liu 已提交
76
    AddOutput("Indices",
77 78
              "(Tensor) The indices of a tensor giving the sorted order, with "
              "the same shape as Input(X).");
Y
Yibing Liu 已提交
79 80 81 82 83 84 85 86 87 88
    AddComment(R"DOC(
Argsort operator

Performs sorting on the input tensor along the given axis and outputs two 
tensors, Output(Out) and Output(Indices). They reserve the same shape 
with Input(X), and Output(Out) represents the sorted tensor while 
Output(Indices) gives the sorted order along the given axis Attr(axis).

 )DOC");
    AddAttr<int>("axis",
89 90 91
                 "(int, default -1) The axis along which to sort the tensor. "
                 "When axis < 0, the actual axis will be the |axis|'th "
                 "counting backwards. Default -1, the last dimension.")
Y
Yibing Liu 已提交
92
        .SetDefault(-1);
93 94 95 96 97 98 99
    AddAttr<bool>(
        "descending",
        "(bool, default false) The descending attribute is a flag to tell"
        "algorithm how to sort the input data."
        "If descending is true, will sort by descending order,"
        "else if false, sort by ascending order. Default value is false.")
        .SetDefault(false);
Y
Yibing Liu 已提交
100 101 102
  }
};

103 104 105 106 107 108
template <typename T>
class ArgsortGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
109
  void Apply(GradOpPtr<T> op) const override {
110 111 112 113 114 115 116 117 118
    op->SetType("argsort_grad");
    op->SetInput("Indices", this->Output("Indices"));
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

119
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ArgsortGradNoNeedBufferVarInference, "X");
120

Y
Yibing Liu 已提交
121 122 123 124
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
125 126 127 128 129
REGISTER_OPERATOR(argsort, ops::ArgsortOp, ops::ArgsortOpMaker,
                  ops::ArgsortGradOpMaker<paddle::framework::OpDesc>,
                  ops::ArgsortGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(argsort_grad, ops::ArgsortGradOp,
                  ops::ArgsortGradNoNeedBufferVarInference);
Y
Yibing Liu 已提交
130 131
REGISTER_OP_CPU_KERNEL(argsort,
                       ops::ArgsortKernel<paddle::platform::CPUPlace, float>,
132 133 134
                       ops::ArgsortKernel<paddle::platform::CPUPlace, double>,
                       ops::ArgsortKernel<paddle::platform::CPUPlace, int>,
                       ops::ArgsortKernel<paddle::platform::CPUPlace, int64_t>);
135 136 137 138 139
REGISTER_OP_CPU_KERNEL(
    argsort_grad, ops::ArgsortGradientKernel<paddle::platform::CPUPlace, float>,
    ops::ArgsortGradientKernel<paddle::platform::CPUPlace, double>,
    ops::ArgsortGradientKernel<paddle::platform::CPUPlace, int>,
    ops::ArgsortGradientKernel<paddle::platform::CPUPlace, int64_t>);