launch.py 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67 68 69 70
from sys import version
import subprocess
import os
import time
import six
import copy
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
71
from paddle.distributed.fleet import launch_utils
72

73
# TODO(danleifeng): Don't import * from a module
74 75
from paddle.distributed.fleet.launch_utils import *
import paddle.distributed.fleet.cloud_utils as cloud_utils
76
import paddle.distributed.fleet.ascend_utils as ascend_utils
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94


def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
95
    base_group = parser.add_argument_group("Base Parameters")
96

97 98
    base_group.add_argument(
        "--log_dir",
99
        type=str,
100 101 102 103
        default="log",
        help="The path for each process's log.If it's not set, the log will printed to default pipe."
    )

104 105 106 107 108 109 110 111
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

112
    base_group.add_argument(
113 114 115
        "--gpus",
        type=str,
        default=None,
116 117 118
        help="It's for gpu training."
        "For example:"
        "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
119 120
    )

G
gongweibao 已提交
121 122 123 124
    base_group.add_argument(
        "--run_mode",
        type=str,
        default="collective",
G
gongweibao 已提交
125
        help="run mode of job, can be:collective/ps/ps-heter")
G
gongweibao 已提交
126 127 128 129 130 131 132

    base_group.add_argument(
        "--ascend_npus",
        type=str,
        default=None,
        help="It's for ascend npu training."
        "For example:"
133
        "--ascend_npus=\"0,1,2,3\" will launch four training processes each bound to one npu."
G
gongweibao 已提交
134 135
    )

136 137
    base_group.add_argument("--selected_gpus", dest="gpus")

138
    base_group.add_argument(
139 140 141 142 143 144 145
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
        help="User defined heter workers ip:port")

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
        "--heter_worker_num", type=int, help="number of heter_workers")
173
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
174

175 176 177
    return parser.parse_args()


178
def get_cluster_from_args(args, device_mode, devices_per_proc):
179 180 181 182 183 184
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        _, node_ip = get_host_name_ip()

185
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
186
        % (node_ip, node_ips)
187 188
    node_rank = node_ips.index(node_ip)

189
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
190 191 192 193 194
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
195
        free_ports = find_free_ports(len(devices_per_proc))
196 197 198 199 200
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
201
            start_port = int(os.environ.get('FLAGS_START_PORT'))
202

203 204 205
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
206

207 208 209
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
210 211
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
212 213 214 215


def launch_collective(args):
    # parse arguments, used for cloud-single-machine and local
216
    (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(args)
217
    trainers_num = cloud_utils.get_trainers_num()
218 219
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))
220 221 222 223

    cluster = None
    pod = None

224 225 226
    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
227
    if cloud_utils.use_paddlecloud() and trainers_num != 1:
228 229
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port)
230
        logger.debug("get cluster from cloud:{}".format(cluster))
231 232 233 234 235 236 237
    elif device_mode == DeviceMode.ASCEND_NPU:
        # for ascend
        cluster, pod = ascend_utils.get_cloud_cluster(
                rank_table_file=os.getenv("RANK_TABLE_FILE", None), 
                device_mode=device_mode,
                devices_per_proc=devices_per_proc,
                start_port=start_port)
238 239
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
240 241
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
242
        logger.debug("get cluster from args:{}".format(cluster))
243

244 245 246
    global_envs = copy.copy(os.environ.copy())
    gloo_rendezvous_dir = tempfile.mkdtemp()
    # add gloo env
L
lilong12 已提交
247
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
248
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
249 250
    global_envs["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir

251 252 253 254 255
    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
256 257
        log_dir=args.log_dir,
        envs=global_envs)
258

G
gongweibao 已提交
259 260 261
    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))

262 263 264 265
    while True:
        alive = watch_local_trainers(procs, cluster.trainers_nranks())

        if not alive:
266 267
            logger.info("Local processes completed.")
            logger.debug("POD info:{}".format(pod))
268 269 270 271
            break

        time.sleep(3)

272 273 274
    if os.path.exists(gloo_rendezvous_dir):
        shutil.rmtree(gloo_rendezvous_dir)

275

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
    elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
        cloud_ps_heter_env_set(args)
        args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
        args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


def which_distributed_mode(args):
G
gongweibao 已提交
295 296 297 298 299 300 301 302 303 304
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

305
    ps_args = [
306 307
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
        '--workers', '--heter_workers', '--http_port'
308
    ]
309
    collective_args = ['--ips']
310

311
    ps_heter_args = ["--heter_worker_num", "--heter_workers"]
312 313 314 315 316 317 318 319

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
320 321 322 323 324 325

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

326
    if fluid.core.is_compiled_with_cuda():
G
gongweibao 已提交
327 328 329
        accelerators = fluid.core.get_cuda_device_count()
    if fluid.core.is_compiled_with_ascend():
        accelerators = fluid.core.NPUDevice.get_device_count()
330
    else:
G
gongweibao 已提交
331
        accelerators = 0
332

333 334
    if len(has_ps_args) > 0:
        logger.info(
G
gongweibao 已提交
335 336
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".
            format(has_ps_args, accelerators))
337 338 339 340 341
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
342
    elif len(has_collective_args) > 0:
G
gongweibao 已提交
343 344
        logger.info("Run collective mode. gpu arguments:{}, cuda count:{}".
                    format(has_collective_args, accelerators))
345
        return DistributeMode.COLLECTIVE
346
    else:
347 348 349 350 351 352 353 354 355 356
        if not fluid.core.is_compiled_with_cuda():
            logger.warning(
                "Not found distinct arguments and not compiled with cuda. Default use ps mode"
            )
            return DistributeMode.PS
        else:
            logger.warning(
                "Not found distinct arguments and compiled with cuda. Default use collective mode"
            )
            return DistributeMode.COLLECTIVE
357 358 359 360 361 362 363 364 365


def launch():
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

    distribute_mode = which_distributed_mode(args)
    if distribute_mode == DistributeMode.COLLECTIVE:
366
        launch_collective(args)
367 368
    else:
        launch_ps(args, distribute_mode)
369 370 371 372


if __name__ == "__main__":
    launch()