send_v2_op.cu.cc 3.8 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/send_v2_op.h"

17
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
lilong12 已提交
18
#include "paddle/fluid/platform/collective_helper.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
L
lilong12 已提交
20 21 22 23 24 25 26 27 28
#endif

namespace paddle {
namespace operators {

template <typename T>
class SendOpV2CUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
29 30
#if (defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)) && \
    NCCL_VERSION_CODE >= 2703
L
lilong12 已提交
31 32 33 34 35 36 37 38 39 40 41
    int rid = ctx.Attr<int>("ring_id");
    PADDLE_ENFORCE_GE(
        rid, 0,
        platform::errors::InvalidArgument(
            "The ring_id (%d) for send_v2 op must be non-negative.", rid));

    int peer = ctx.Attr<int>("peer");
    PADDLE_ENFORCE_GE(
        peer, 0,
        platform::errors::InvalidArgument(
            "The peer (%d) for send_v2 op must be non-negative.", peer));
42
    gpuStream_t stream = nullptr;
L
lilong12 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55
    auto place = ctx.GetPlace();
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }
    PADDLE_ENFORCE_LT(
        peer, comm->nranks(),
        platform::errors::InvalidArgument("The value of peer (%d) you set must "
                                          "be less than comm->nranks (%d).",
                                          peer, comm->nranks()));
56 57 58 59 60 61 62 63 64

    auto* x_var = ctx.InputVar("X");
    if (x_var->IsType<framework::LoDTensorArray>()) {
      auto& x_array = x_var->Get<framework::LoDTensorArray>();
      for (size_t idx = 0; idx < x_array.size(); idx++) {
        VLOG(3) << "LodTensorArray: idx(" << idx << ")";
        auto& x = x_array.at(idx);
        int numel = x.numel();
        ncclDataType_t dtype = platform::ToNCCLDataType(x.type());
65
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
66 67 68 69 70 71 72 73 74
            x.data<T>(), numel, dtype, peer, comm->comm(), stream));
        VLOG(3) << "rank " << comm->rank() << " send "
                << framework::product(x.dims()) << " to " << peer;
      }
      return;
    }
    auto x = ctx.Input<framework::LoDTensor>("X");
    int numel = x->numel();

L
lilong12 已提交
75
    ncclDataType_t dtype = platform::ToNCCLDataType(x->type());
76
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
L
lilong12 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        x->data<T>(), numel, dtype, peer, comm->comm(), stream));
    VLOG(3) << "rank " << comm->rank() << " send "
            << framework::product(x->dims()) << " to " << peer;
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should be compiled with NCCL "
        "and NCCL version >= 2.7.3 is needed."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(send_v2, ops::SendOpV2CUDAKernel<float>,
                        ops::SendOpV2CUDAKernel<double>,
                        ops::SendOpV2CUDAKernel<int>,
                        ops::SendOpV2CUDAKernel<int64_t>,
                        ops::SendOpV2CUDAKernel<plat::float16>);