test_cvm_op.py 4.8 KB
Newer Older
H
heqiaozhi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from math import log
from math import exp
from op_test import OpTest
import unittest


T
tangwei12 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
def cvm_compute(X, item_width, use_cvm):
    cvm_offset = 0 if use_cvm else 2
    batch_size = X.shape[0]

    Y = np.ones([batch_size, item_width - cvm_offset], np.float32)

    for idx in range(batch_size):
        if use_cvm:
            Y[idx] = X[idx]
            Y[idx][0] = log(Y[idx][0] + 1)
            Y[idx][1] = log(Y[idx][1] + 1) - Y[idx][0]
        else:
            Y[idx] = X[idx][2:]

    return Y


def cvm_grad_compute(DY, CVM, item_width, use_cvm):
    batch_size = DY.shape[0]
    DX = np.ones([batch_size, item_width], np.float32)

    for idx in range(batch_size):
        DX[idx][0] = CVM[idx][0]
        DX[idx][1] = CVM[idx][1]

        if use_cvm:
            DX[idx][2:] = DY[idx][2:]
        else:
            DX[idx][2:] = DY[idx]
    return DX


class TestCVMOpWithLodTensor(OpTest):
H
heqiaozhi 已提交
55 56 57 58 59 60
    """
        Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
T
tangwei12 已提交
61 62
        self.use_cvm = True

H
hutuxian 已提交
63 64
        self.batch_size = 1
        self.item_width = 11
T
tangwei12 已提交
65

H
heqiaozhi 已提交
66 67
        lod = [[1]]
        self.inputs = {
H
hutuxian 已提交
68 69 70
            'X': (np.random.uniform(
                0, 1, [self.batch_size, self.item_width]).astype("float32"),
                  lod),
H
heqiaozhi 已提交
71 72 73 74 75 76 77 78 79 80 81
            'CVM': np.array([[0.6, 0.4]]).astype("float32"),
        }
        self.attrs = {'use_cvm': False}
        out = []
        for index, emb in enumerate(self.inputs["X"][0]):
            out.append(emb[2:])
        self.outputs = {'Y': (np.array(out), lod)}

    def test_check_output(self):
        self.check_output()

H
hutuxian 已提交
82 83 84 85 86 87 88 89
    def test_check_grad(self):
        user_grads = np.array(
            [1.0 / (self.item_width - 2)] * self.item_width).reshape(
                (self.batch_size, self.item_width)).astype("float32")
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
        self.check_grad(['X'], 'Y', user_defined_grads=user_grads)

H
heqiaozhi 已提交
90

T
tangwei12 已提交
91 92 93 94 95 96 97 98 99
class TestCVMOpWithOutLodTensor1(OpTest):
    """
    Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
        self.use_cvm = True

H
hutuxian 已提交
100 101
        self.batch_size = 2
        self.item_width = 11
T
tangwei12 已提交
102

H
hutuxian 已提交
103 104 105 106 107
        input = np.random.uniform(
            0, 1, (self.batch_size, self.item_width)).astype('float32')
        output = cvm_compute(input, self.item_width, self.use_cvm)
        cvm = np.array([[0.6, 0.4] * self.batch_size]).reshape(
            (self.batch_size, 2)).astype("float32")
T
tangwei12 已提交
108 109 110 111 112 113 114 115

        self.inputs = {'X': input, 'CVM': cvm}
        self.attrs = {'use_cvm': self.use_cvm}
        self.outputs = {'Y': output}

    def test_check_output(self):
        self.check_output()

H
hutuxian 已提交
116 117 118 119 120 121 122 123
    def test_check_grad(self):
        numel = self.batch_size * self.item_width
        user_grads = np.array([1.0 / numel] * numel).reshape(
            (self.batch_size, self.item_width)).astype("float32")
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
        self.check_grad(['X'], 'Y', user_defined_grads=user_grads)

T
tangwei12 已提交
124 125 126 127 128 129 130 131 132 133

class TestCVMOpWithOutLodTensor2(OpTest):
    """
    Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
        self.use_cvm = False

H
hutuxian 已提交
134 135
        self.batch_size = 2
        self.item_width = 11
T
tangwei12 已提交
136

H
hutuxian 已提交
137 138 139 140 141
        input = np.random.uniform(
            0, 1, (self.batch_size, self.item_width)).astype('float32')
        output = cvm_compute(input, self.item_width, self.use_cvm)
        cvm = np.array([[0.6, 0.4] * self.batch_size]).reshape(
            (self.batch_size, 2)).astype("float32")
T
tangwei12 已提交
142 143 144 145 146 147 148 149

        self.inputs = {'X': input, 'CVM': cvm}
        self.attrs = {'use_cvm': self.use_cvm}
        self.outputs = {'Y': output}

    def test_check_output(self):
        self.check_output()

H
hutuxian 已提交
150 151 152 153 154 155 156 157 158
    def test_check_grad(self):
        numel = self.batch_size * self.item_width
        user_grads = np.array(
            [1.0 / (self.batch_size * (self.item_width - 2))] * numel).reshape(
                (self.batch_size, self.item_width)).astype("float32")
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
        self.check_grad(['X'], 'Y', user_defined_grads=user_grads)

T
tangwei12 已提交
159

H
heqiaozhi 已提交
160 161
if __name__ == '__main__':
    unittest.main()