recompute.py 12.9 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid import core
from paddle.autograd import PyLayer
from paddle.fluid import framework
import contextlib

import logging
22 23 24 25 26 27
logger = logging.getLogger(__name__)
formatter = logging.Formatter(
    fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
J
JZ-LIANG 已提交
28

29 30
__all__ = []

J
JZ-LIANG 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

def detach_variable(inputs):
    out = []
    for inp in inputs:
        if not isinstance(inp, core.VarBase):
            out.append(inp)
            continue

        x = inp.detach()
        x.stop_gradient = inp.stop_gradient
        out.append(x)
    return tuple(out)


def check_recompute_necessary(inputs):
    if not any(input_.stop_gradient == False for input_ in inputs
               if isinstance(input_, paddle.Tensor)):
48
        logger.warn(
J
JZ-LIANG 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
            "[Recompute]: None of the inputs to current recompute block need grad, "
            "therefore there is NO need to recompute this block in backward !")


@contextlib.contextmanager
def swith_rng_state(rng_state):
    orig_cuda_rng_state = paddle.get_cuda_rng_state()
    paddle.set_cuda_rng_state(rng_state)
    try:
        yield
    finally:
        paddle.set_cuda_rng_state(orig_cuda_rng_state)


class RecomputeFunction(PyLayer):
    @staticmethod
    def forward(ctx, run_function, preserve_rng_state, *args):
66 67
        if framework._dygraph_tracer()._has_grad:
            check_recompute_necessary(args)
J
JZ-LIANG 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

        # store for recomputing 
        ctx.run_function = run_function
        ctx.preserve_rng_state = preserve_rng_state

        # NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
        # the order of tensors in backward()'s output should be the same as tensors in forward()'s input
        # None tensor inputs will be filtered in backward inputs.

        # save input for backward
        ctx.inputs = []
        ctx.tensor_indices = []
        tensor_inputs = []
        for i, arg in enumerate(args):
            if paddle.is_tensor(arg):
                tensor_inputs.append(arg)
                ctx.tensor_indices.append(i)
                ctx.inputs.append(None)
            else:
                ctx.inputs.append(arg)
        ctx.save_for_backward(*tensor_inputs)

        # NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
        # one process with multiple gpu and mix-gpu-cpu senarios are not support
        if ctx.preserve_rng_state:
            cur_device = paddle.get_device()
            if 'gpu:' not in cur_device:
                raise RuntimeError(
                    "Recompute with RNG perserve is not support current device: {}.".
                    format(cur_device))
            ctx.fw_cuda_rng_state = paddle.get_cuda_rng_state()

        # TODO support AMP
101
        tracer = framework._dygraph_tracer()
102 103 104 105 106
        ctx.is_fw_autocast = False if tracer._amp_level == core.AmpLevel.O0 else True
        if tracer._amp_level == core.AmpLevel.O2:
            ctx.amp_level = 'O2'
        elif tracer._amp_level in (core.AmpLevel.O1, core.AmpLevel.O0):
            ctx.amp_level = 'O1'
107
        else:
108 109
            raise ValueError("unsupported amp level: {}".format(
                tracer._amp_level))
110 111 112 113 114 115 116 117 118

        if tracer._amp_dtype == 'float16':
            ctx.amp_dtype = 'float16'
        elif tracer._amp_dtype in ('bfloat16', 'float32'):
            ctx.amp_dtype = 'bfloat16'
        else:
            raise ValueError("unsupported amp dtype: {}".format(
                tracer._amp_dtype))

119
        ctx.amp_white_list, ctx.amp_black_list = tracer._get_amp_op_list()
J
JZ-LIANG 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

        with paddle.no_grad():
            outputs = run_function(*args)
        return outputs

    @staticmethod
    def backward(ctx, *args):
        with paddle.fluid.dygraph.guard():
            # TODO need to check the recompute calling is vaild or not

            # Restore inputs
            inputs = list(ctx.inputs)
            tensor_indices = ctx.tensor_indices
            tensors = ctx.saved_tensor()
            for i, idx in enumerate(tensor_indices):
                inputs[idx] = tensors[i]

            # paddle.enable_grad()
            tracer = framework._dygraph_tracer()
            tracer._has_grad = True

141 142
            # NOTE support AMP
            # need restore auto_cast state as well as w/b list
J
JZ-LIANG 已提交
143 144
            if ctx.preserve_rng_state:
                with swith_rng_state(ctx.fw_cuda_rng_state):
145 146 147
                    with paddle.amp.auto_cast(
                            enable=ctx.is_fw_autocast,
                            custom_white_list=ctx.amp_white_list,
148
                            custom_black_list=ctx.amp_black_list,
149 150
                            level=ctx.amp_level,
                            dtype=ctx.amp_dtype):
151 152 153 154 155 156
                        detached_inputs = detach_variable(tuple(inputs))
                        outputs = ctx.run_function(*detached_inputs)
            else:
                with paddle.amp.auto_cast(
                        enable=ctx.is_fw_autocast,
                        custom_white_list=ctx.amp_white_list,
157
                        custom_black_list=ctx.amp_black_list,
158 159
                        level=ctx.amp_level,
                        dtype=ctx.amp_dtype):
J
JZ-LIANG 已提交
160 161 162 163 164 165 166 167 168
                    detached_inputs = detach_variable(tuple(inputs))
                    outputs = ctx.run_function(*detached_inputs)

            if isinstance(outputs, core.VarBase):
                outputs = (outputs, )
            assert len(outputs) == len(args)

            # run backward() with only tensor that requires grad
            forward_outputs_with_grad = []
169 170 171 172 173
            # NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
            # pylayer will force the stop_gradient of attention mask to be False, which will make the number of 
            # tensor that need grad does not match.
            # the following backward_inputs_with_grad is used to avoid this case.
            backward_inputs_with_grad = []
J
JZ-LIANG 已提交
174 175 176 177
            for i in range(len(outputs)):
                if isinstance(outputs[i],
                              core.VarBase) and not outputs[i].stop_gradient:
                    forward_outputs_with_grad.append(outputs[i])
178 179
                    backward_inputs_with_grad.append(args[i])

J
JZ-LIANG 已提交
180 181 182 183 184
            if len(forward_outputs_with_grad) == 0:
                raise RuntimeError(
                    "none of output has requires_grad=True, this recompute() is not necessary"
                )

185 186 187 188
            # actually backward
            with paddle.amp.auto_cast(enable=False):
                paddle.autograd.backward(forward_outputs_with_grad,
                                         backward_inputs_with_grad)
J
JZ-LIANG 已提交
189 190 191 192 193 194 195 196 197 198

            grads = list(inp._grad_ivar() for inp in detached_inputs
                         if isinstance(inp, core.VarBase))
            return grads


def recompute(function, *args, **kwargs):
    """
    recompute intermediate activations to save then memory.

199 200 201 202 203 204 205 206 207
    Parameters:
        function(paddle.nn.Sequential): layer of sequence of layers that describes part of forward pass of the model  
              whose intermediate activations will be released to save memory in forward stage and will be recomputed 
              in backward stage for gradient calculation. 
        *args(Tensor): inputs to the function.    
        **kwargs(Dict): Kwargs should only contain the key-value pair of preserve_rng_state, which is used to 
              indicate whether to save the forward rng. If it is True, then the last forward rng value will be 
              restored when the forward recalculation of backpropagation is performed. The default 
              preserve_rng_state is True.
J
JZ-LIANG 已提交
208 209

    Returns:
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        Output of function on args.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed.fleet.utils import recompute
            import random

            # required: gpu

            def get_fc_block(block_idx, input_size, is_last=False):
                block_name = "block_" + str(block_idx)
                block = paddle.nn.Sequential(
                    (block_name + "_fc_0", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
                    (block_name + "_dropout", paddle.nn.Dropout(p=0.5)),
                    (block_name + "_relu_1", paddle.nn.ReLU()),
                    (block_name + "_fc_1", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
                    (block_name + "_relu_2", paddle.nn.ReLU()),
                )
                if is_last:
                    block.add_sublayer(
                        block_name + "_fc_2",
                        paddle.nn.Linear(
                            input_size, 1, bias_attr=False
                        )
                    )
                else:
                    block.add_sublayer(
                        block_name + "_fc_2",
                        paddle.nn.Linear(input_size, input_size, bias_attr=False)
                    )

                return block


            class Naive_fc_net(paddle.nn.Layer):
                def __init__(self, input_size=10,
                            recompute_blocks=[1, 3],
                            recompute_kwargs={}):
                    super(Naive_fc_net, self).__init__()
                    self.recompute_blocks = recompute_blocks
                    self.recompute_kwargs = recompute_kwargs
                    self.runfunc0 = get_fc_block(0, input_size, is_last=False)
                    self.runfunc1 = get_fc_block(1, input_size, is_last=False)
                    self.runfunc2 = get_fc_block(2, input_size, is_last=False)
                    self.runfunc3 = get_fc_block(3, input_size, is_last=False)
                    self.runfunc4 = get_fc_block(4, input_size, is_last=True)
                    self.total_func = [self.runfunc0, self.runfunc1, self.runfunc2, self.runfunc3, self.runfunc4]

                def forward(self, inputs):
                    nums = len(self.total_func)
                    for i in range(nums):
                        if i in self.recompute_blocks:
                            inputs = recompute(self.total_func[i], inputs, **{"preserve_rng_state": True})
                        else:
                            inputs = self.total_func[i](inputs)
                    return inputs

            def run_model(cuda_state, recompute_block=[], recompute_kwargs={}):
                gen = paddle.seed(10)
                gen.manual_seed(10)
                np.random.seed(10)
                random.seed(10)
                if cuda_state:
                    paddle.set_cuda_rng_state(cuda_state)

                batch_size, input_size = 1, 10
                model = Naive_fc_net(
                    input_size,
                    recompute_blocks=recompute_block,
                    recompute_kwargs=recompute_kwargs)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                loss_ = []
                param_ = []
                grad_ = []
                for _ in range(5):
                    x_data = np.random.randn(batch_size, input_size).astype(np.float32)
                    x = paddle.to_tensor(x_data)
                    y_pred = model(x)
                    loss = y_pred.mean()
                    loss_.append(np.asarray(loss).tolist())
                    loss.backward()
                    optimizer.step()
                    param_.append(np.asarray(model.parameters()[9]).tolist())
                    grad_.append(np.asarray(model.parameters()[3]._grad_ivar()).tolist())
                    optimizer.clear_grad()

                return loss_, param_, grad_

            cuda_state = paddle.get_cuda_rng_state()
            # without recompute
            loss_ref, param_ref, grad_ref = run_model(
                cuda_state, recompute_block=[]
            )

            loss, param, grad = run_model(cuda_state, recompute_block=[1, 2])
            print("normal_loss: {}, recompute_loss: {}".format(loss_ref, loss))
            # The result of the recompute_loss should be the same as the normal_loss.

J
JZ-LIANG 已提交
311 312 313 314 315 316 317 318
    """
    # Hack to mix *args with **kwargs in a python 2.7-compliant way
    preserve = kwargs.pop('preserve_rng_state', True)
    if kwargs:
        raise ValueError("Unexpected keyword arguments: " + ",".join(
            arg for arg in kwargs))

    return RecomputeFunction.apply(function, preserve, *args)