tensor_utils.cc 10.1 KB
Newer Older
石晓伟 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/lite/tensor_utils.h"
W
Wilber 已提交
16
#include <functional>
石晓伟 已提交
17
#include <map>
18
#include <memory>
石晓伟 已提交
19 20
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/inference/lite/engine.h"
21
#include "paddle/fluid/memory/allocation/allocator.h"
石晓伟 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace inference {
namespace lite {
namespace utils {

using paddle::lite_api::TargetType;
using paddle::lite_api::PrecisionType;
using paddle::lite_api::DataLayoutType;

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}
template void SetLoD<paddle::lite::LoD, framework::LoD>(
    paddle::lite::LoD* dst, const framework::LoD& src);
template void SetLoD<framework::LoD, paddle::lite::LoD>(
    framework::LoD* dst, const paddle::lite::LoD& src);

platform::Place GetNativePlace(const TargetType& type, int id = 0) {
  switch (type) {
    case TargetType::kHost:
    case TargetType::kX86:
W
Wilber 已提交
49
    case TargetType::kARM:
石晓伟 已提交
50 51 52
      return platform::CPUPlace();
    case TargetType::kCUDA:
      return platform::CUDAPlace(id);
53 54 55
    case TargetType::kXPU:
      LOG(ERROR) << "No corresponding device for XPU yet.";
      return platform::Place();
石晓伟 已提交
56
    default:
57 58 59
      PADDLE_THROW(
          platform::errors::Unavailable("Unsupported target type. Now only "
                                        "supports Host, x86, CUDA target."));
石晓伟 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
      return platform::Place();
  }
}

TargetType GetLiteTargetType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return TargetType::kHost;
  }
  return TargetType::kCUDA;
}

PrecisionType GetLitePrecisionType(framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType_Type_FP32:
      return PrecisionType::kFloat;
    case framework::proto::VarType_Type_INT8:
      return PrecisionType::kInt8;
    case framework::proto::VarType_Type_INT32:
      return PrecisionType::kInt32;
    case framework::proto::VarType_Type_INT64:
      return PrecisionType::kInt64;
    default:
82 83 84
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported precision type. Now only supports FP32, INT8, INT32 and "
          "INT64."));
石晓伟 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
      return PrecisionType::kUnk;
  }
}

framework::proto::VarType::Type GetNativePrecisionType(
    const PrecisionType& type) {
  switch (type) {
    case PrecisionType::kFloat:
      return framework::proto::VarType_Type_FP32;
    case PrecisionType::kInt8:
      return framework::proto::VarType_Type_INT8;
    case PrecisionType::kInt32:
      return framework::proto::VarType_Type_INT32;
    case PrecisionType::kInt64:
      return framework::proto::VarType_Type_INT64;
    default:
101 102 103
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported precision type. Now only supports FP32, INT8, INT32 and "
          "INT64."));
石晓伟 已提交
104 105 106 107 108 109 110 111 112
      return static_cast<framework::proto::VarType::Type>(-1);
  }
}

framework::DataLayout GetNativeLayoutType(const DataLayoutType& type) {
  switch (type) {
    case DataLayoutType::kNCHW:
      return framework::DataLayout::kNCHW;
    default:
113 114
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported layout type. Now only supports NCHW."));
石晓伟 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
      return static_cast<framework::DataLayout>(-1);
  }
}

void MemoryCopyAsync(const platform::Place& dst_place, void* dst_data,
                     const platform::Place& src_place, const void* src_data,
                     const size_t size, const platform::DeviceContext& ctx) {
  const platform::CPUPlace cpu_place;
  if (platform::is_cpu_place(dst_place) && platform::is_cpu_place(src_place)) {
    memory::Copy(cpu_place, dst_data, cpu_place, src_data, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    if (platform::is_cpu_place(dst_place) &&
        platform::is_gpu_place(src_place)) {
129 130
      PADDLE_THROW(platform::errors::Unimplemented(
          "Lite::MemoryCopy GPU->CPU is not yet implemented."));
石晓伟 已提交
131 132
    } else if (platform::is_gpu_place(dst_place) &&
               platform::is_cpu_place(src_place)) {
133 134
      PADDLE_THROW(platform::errors::Unimplemented(
          "Lite::MemoryCopy CPU->GPU is not yet implemented."));
石晓伟 已提交
135 136
    } else if (platform::is_gpu_place(dst_place) &&
               platform::is_gpu_place(src_place)) {
137
      auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
石晓伟 已提交
138 139 140 141 142
      memory::Copy(
          gpu_place, dst_data, gpu_place, src_data, size,
          static_cast<const platform::CUDADeviceContext&>(ctx).stream());
    }
#else
143 144
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "You must define PADDLE_WITH_CUDA for using CUDAPlace."));
石晓伟 已提交
145 146 147 148
#endif
  }
}

W
Wilber 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
void* GetLiteTensorDataPtr(paddle::lite_api::Tensor* src,
                           PrecisionType precision_type,
                           TargetType target_type) {
  void* res{nullptr};
  switch (precision_type) {
    case PrecisionType::kFloat:
      res = static_cast<void*>(src->mutable_data<float>(target_type));
      break;
    case PrecisionType::kInt8:
      res = static_cast<void*>(src->mutable_data<int8_t>(target_type));
      break;
    case PrecisionType::kInt32:
      res = static_cast<void*>(src->mutable_data<int32_t>(target_type));
      break;
    case PrecisionType::kInt64:
      res = static_cast<void*>(src->mutable_data<int64_t>(target_type));
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported precision type. Now only supports FP32, INT8, INT32 and "
          "INT64."));
      break;
  }
  return res;
}

int64_t GetLiteTensorNumel(const paddle::lite_api::Tensor& tensor) {
  auto shape = tensor.shape();
  int64_t numel = std::accumulate(shape.begin(), shape.end(), 1,
                                  std::multiplies<int64_t>());
  return numel;
}

void InitDstTensor(paddle::lite_api::Tensor* dst,
                   const framework::LoDTensor& src) {
石晓伟 已提交
184 185 186
  // Currently, Lite needs to explicitly specify the target type of
  // the input tensor.
  constexpr int empty_size = 0;
W
Wilber 已提交
187 188 189 190 191 192 193
  dst->Resize({empty_size});
  GetLiteTensorDataPtr(dst, GetLitePrecisionType(src.type()),
                       GetLiteTargetType(src.place()));
  dst->SetPrecision(GetLitePrecisionType(src.type()));
  paddle::lite::LoD lite_lod;
  SetLoD(&lite_lod, src.lod());
  dst->SetLoD(lite_lod);
石晓伟 已提交
194 195
}

W
Wilber 已提交
196 197
void InitDstTensor(framework::LoDTensor* dst,
                   const paddle::lite_api::Tensor& src) {
石晓伟 已提交
198 199 200 201 202 203 204 205
  constexpr framework::proto::VarType::Type dtype =
      framework::proto::VarType_Type_FP32;
  dst->mutable_data(inference::lite::utils::GetNativePlace(src.target()),
                    dtype);
  SetLoD(dst->mutable_lod(), src.lod());
}

template <>
W
Wilber 已提交
206 207
void TensorCopyAsync(paddle::lite_api::Tensor* dst,
                     const framework::LoDTensor& src,
石晓伟 已提交
208 209 210 211 212 213 214 215
                     const platform::DeviceContext& ctx) {
  InitDstTensor(dst, src);
  const platform::Place& src_place = src.place();
  const platform::Place& dst_place = GetNativePlace(dst->target());
  const size_t bytes =
      static_cast<size_t>(src.numel()) * framework::SizeOfType(src.type());
  dst->Resize(framework::vectorize(src.dims()));
  const void* src_data = src.data<void>();
W
Wilber 已提交
216 217 218
  void* dst_data{nullptr};
  dst_data = GetLiteTensorDataPtr(dst, GetLitePrecisionType(src.type()),
                                  GetLiteTargetType(src.place()));
219 220
  VLOG(3) << "[CopyAsync fluid -> lite] Bytes = " << bytes << ", src = " << &src
          << ", dst = " << dst << ", src_type = " << src.type();
石晓伟 已提交
221
  MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx);
W
Wilber 已提交
222
  VLOG(3) << "[Lite memory size] Bytes = " << bytes;
石晓伟 已提交
223 224 225
}

template <>
W
Wilber 已提交
226 227
void TensorCopyAsync(framework::LoDTensor* dst,
                     const paddle::lite_api::Tensor& src,
石晓伟 已提交
228
                     const platform::DeviceContext& ctx) {
W
Wilber 已提交
229
  dst->Resize(paddle::framework::make_ddim(src.shape()));
石晓伟 已提交
230 231 232
  InitDstTensor(dst, src);
  const platform::Place& src_place = GetNativePlace(src.target());
  const platform::Place& dst_place = dst->place();
W
Wilber 已提交
233 234 235
  int64_t src_numel = GetLiteTensorNumel(src);
  const size_t bytes = src_numel * framework::SizeOfType(dst->type());
  const void* src_data = src.data<void>();
石晓伟 已提交
236 237
  // When Lite is ready, the source type needs to be modified here.
  void* dst_data = dst->mutable_data(dst_place, dst->type());
238 239
  VLOG(3) << "[CopyAsync lite -> fluid] Bytes = " << bytes << ", src = " << &src
          << ", dst = " << dst << ", src_type = " << dst->type();
石晓伟 已提交
240
  MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx);
W
Wilber 已提交
241
  VLOG(3) << "[Lite memory size] Bytes = " << bytes;
石晓伟 已提交
242 243
}

244
template <>
W
Wilber 已提交
245
void TensorDataShare(paddle::lite_api::Tensor* dst, framework::LoDTensor* src) {
246
  dst->Resize(framework::vectorize(src->dims()));
W
Wilber 已提交
247 248 249 250 251 252
  dst->ShareExternalMemory(src->data<void>(), src->memory_size(),
                           GetLiteTargetType(src->place()));
  dst->SetPrecision(GetLitePrecisionType(src->type()));
  paddle::lite::LoD lite_lod;
  SetLoD(&lite_lod, src->lod());
  dst->SetLoD(lite_lod);
253 254 255
}

template <>
W
Wilber 已提交
256
void TensorDataShare(framework::LoDTensor* dst, paddle::lite_api::Tensor* src) {
257 258
  constexpr framework::proto::VarType::Type dtype =
      framework::proto::VarType_Type_FP32;
W
Wilber 已提交
259 260 261
  void* src_raw_data =
      GetLiteTensorDataPtr(src, GetLitePrecisionType(dtype), src->target());
  size_t memory_size = GetLiteTensorNumel(*src) * sizeof(float);
262
  std::shared_ptr<memory::allocation::Allocation> holder(
W
Wilber 已提交
263
      new memory::allocation::Allocation(src_raw_data, memory_size,
264
                                         GetNativePlace(src->target())));
W
Wilber 已提交
265
  dst->Resize(paddle::framework::make_ddim(src->shape()));
266 267 268 269
  SetLoD(dst->mutable_lod(), src->lod());
  dst->ResetHolderWithType(holder, dtype);
}

石晓伟 已提交
270 271 272 273
}  // namespace utils
}  // namespace lite
}  // namespace inference
}  // namespace paddle