test_dist_base.py 11.4 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17 18 19 20
import time

import unittest
import os
import sys
M
minqiyang 已提交
21
import six
X
Xin Pan 已提交
22 23
import signal
import subprocess
W
Wu Yi 已提交
24
import argparse
T
typhoonzero 已提交
25 26 27 28 29 30 31 32


class TestDistRunnerBase(object):
    def get_model(self, batch_size=2):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def get_transpiler(self, trainer_id, main_program, pserver_endpoints,
W
Wu Yi 已提交
33
                       trainers, sync_mode):
T
typhoonzero 已提交
34 35 36 37 38 39 40 41
        # NOTE: import fluid until runtime, or else forking processes will cause error.
        import paddle
        import paddle.fluid as fluid
        t = fluid.DistributeTranspiler()
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
42 43
            trainers=trainers,
            sync_mode=sync_mode)
T
typhoonzero 已提交
44 45
        return t

W
Wu Yi 已提交
46
    def run_pserver(self, args):
T
typhoonzero 已提交
47 48 49
        import paddle
        import paddle.fluid as fluid
        self.get_model(batch_size=2)
W
Wu Yi 已提交
50 51 52 53 54 55 56 57
        if args.mem_opt:
            fluid.memory_optimize(fluid.default_main_program())
        t = self.get_transpiler(args.trainer_id,
                                fluid.default_main_program(), args.endpoints,
                                args.trainers, args.sync_mode)
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
T
typhoonzero 已提交
58 59 60 61 62
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

W
Wu Yi 已提交
63
    def run_trainer(self, place, args):
T
typhoonzero 已提交
64 65 66
        import paddle
        import paddle.fluid as fluid
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
W
Wu Yi 已提交
67 68 69 70 71 72 73 74
            self.get_model(batch_size=2)
        if args.mem_opt:
            fluid.memory_optimize(fluid.default_main_program())
        if args.is_dist:
            t = self.get_transpiler(args.trainer_id,
                                    fluid.default_main_program(),
                                    args.endpoints, args.trainers,
                                    args.sync_mode)
T
typhoonzero 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            trainer_prog = t.get_trainer_program()
        else:
            trainer_prog = fluid.default_main_program()

        startup_exe = fluid.Executor(place)
        startup_exe.run(fluid.default_startup_program())

        strategy = fluid.ExecutionStrategy()
        strategy.num_threads = 1
        strategy.allow_op_delay = False
        exe = fluid.ParallelExecutor(
            True, loss_name=avg_cost.name, exec_strategy=strategy)

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = test_reader()

        data = next(reader_generator)
        first_loss, = exe.run(fetch_list=[avg_cost.name],
                              feed=feeder.feed(data))
        print(first_loss)

        for i in six.moves.xrange(5):
            data = next(reader_generator)
            loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))

        data = next(reader_generator)
        last_loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
        print(last_loss)


def runtime_main(test_class):
    import paddle
    import paddle.fluid as fluid
    import paddle.fluid.core as core

W
Wu Yi 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
    parser.add_argument('--is_dist', action='store_true')
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
    parser.add_argument('--mem_opt', action='store_true')

    args = parser.parse_args()
T
typhoonzero 已提交
128 129

    model = test_class()
W
Wu Yi 已提交
130 131
    if args.role == "pserver" and args.is_dist:
        model.run_pserver(args)
T
typhoonzero 已提交
132 133 134
    else:
        p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
W
Wu Yi 已提交
135
        model.run_trainer(p, args)
X
Xin Pan 已提交
136

M
minqiyang 已提交
137

M
minqiyang 已提交
138
import paddle.compat as cpt
M
minqiyang 已提交
139

X
Xin Pan 已提交
140 141

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
142 143 144
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

X
Xin Pan 已提交
145 146 147 148 149
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
        self._ps_endpoints = "127.0.0.1:9123,127.0.0.1:9124"
        self._python_interp = "python"
W
Wu Yi 已提交
150
        self._sync_mode = True
W
Wu Yi 已提交
151
        self._mem_opt = False
W
Wu Yi 已提交
152
        self._setup_config()
X
Xin Pan 已提交
153

G
gongweibao 已提交
154
    def start_pserver(self, model_file, check_error_log):
W
Wu Yi 已提交
155

X
Xin Pan 已提交
156
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
W
Wu Yi 已提交
157 158 159 160
        ps_cmd = "%s %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --is_dist %s %s"
        sync_mode_str = "--sync_mode" if self._sync_mode else ""
        mem_opt_str = "--mem_opt" if self._mem_opt else ""
        ps0_cmd = ps_cmd % \
X
Xin Pan 已提交
161
            (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
W
Wu Yi 已提交
162 163
             self._trainers, sync_mode_str, mem_opt_str)
        ps1_cmd = ps_cmd % \
X
Xin Pan 已提交
164
            (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
W
Wu Yi 已提交
165
             self._trainers, sync_mode_str, mem_opt_str)
X
Xin Pan 已提交
166

G
gongweibao 已提交
167 168 169
        ps0_pipe = subprocess.PIPE
        ps1_pipe = subprocess.PIPE
        if check_error_log:
W
Wu Yi 已提交
170 171
            print(ps0_cmd)
            print(ps1_cmd)
G
gongweibao 已提交
172 173 174
            ps0_pipe = open("/tmp/ps0_err.log", "wb")
            ps1_pipe = open("/tmp/ps1_err.log", "wb")

X
Xin Pan 已提交
175
        ps0_proc = subprocess.Popen(
W
Wu Yi 已提交
176
            ps0_cmd.strip().split(" "), stdout=subprocess.PIPE, stderr=ps0_pipe)
X
Xin Pan 已提交
177
        ps1_proc = subprocess.Popen(
W
Wu Yi 已提交
178
            ps1_cmd.strip().split(" "), stdout=subprocess.PIPE, stderr=ps1_pipe)
G
gongweibao 已提交
179 180 181 182 183

        if not check_error_log:
            return ps0_proc, ps1_proc, None, None
        else:
            return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
184 185

    def _wait_ps_ready(self, pid):
X
polish  
Xin Pan 已提交
186
        retry_times = 50
X
Xin Pan 已提交
187 188 189 190 191 192 193 194
        while True:
            assert retry_times >= 0, "wait ps ready failed"
            time.sleep(3)
            try:
                # the listen_and_serv_op would touch a file which contains the listen port
                # on the /tmp directory until it was ready to process all the RPC call.
                os.stat("/tmp/paddle.%d.port" % pid)
                return
X
polish  
Xin Pan 已提交
195 196 197
            except os.error as e:
                sys.stderr.write('waiting for pserver: %s, left retry %d\n' %
                                 (e, retry_times))
X
Xin Pan 已提交
198 199
                retry_times -= 1

G
gongweibao 已提交
200
    def check_with_place(self, model_file, delta=1e-3, check_error_log=False):
W
Wu Yi 已提交
201
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
X
Xin Pan 已提交
202 203 204 205
        required_envs = {
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH"),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH"),
W
Wu Yi 已提交
206 207
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_cudnn_deterministic": "1"
X
Xin Pan 已提交
208
        }
G
gongweibao 已提交
209 210 211 212 213

        if check_error_log:
            required_envs["GLOG_v"] = "7"
            required_envs["GLOG_logtostderr"] = "1"

X
Xin Pan 已提交
214
        # Run local to get a base line
X
clean  
Xin Pan 已提交
215
        env_local = {"CUDA_VISIBLE_DEVICES": "0"}
X
Xin Pan 已提交
216
        env_local.update(required_envs)
W
Wu Yi 已提交
217
        local_cmd = "%s %s --role trainer" % (self._python_interp, model_file)
G
gongweibao 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231
        if not check_error_log:
            local_proc = subprocess.Popen(
                local_cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                env=env_local)
        else:
            err_log = open("/tmp/trainer.err.log", "wb")
            local_proc = subprocess.Popen(
                local_cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=err_log,
                env=env_local)

X
Xin Pan 已提交
232 233
        local_proc.wait()
        out, err = local_proc.communicate()
M
minqiyang 已提交
234
        local_ret = cpt.to_text(out)
X
Xin Pan 已提交
235 236 237 238
        sys.stderr.write('local_loss: %s\n' % local_ret)
        sys.stderr.write('local_stderr: %s\n' % err)

        # Run dist train to compare with local results
G
gongweibao 已提交
239 240
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model_file,
                                                          check_error_log)
X
Xin Pan 已提交
241 242 243 244
        self._wait_ps_ready(ps0.pid)
        self._wait_ps_ready(ps1.pid)

        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
W
Wu Yi 已提交
245 246 247 248 249 250 251 252 253 254 255
        tr_cmd = "%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --is_dist %s %s"
        sync_mode_str = "--sync_mode" if self._sync_mode else ""
        mem_opt_str = "--mem_opt" if self._mem_opt else ""
        tr0_cmd = tr_cmd % \
            (self._python_interp, model_file, self._ps_endpoints,
             0, ps0_ep,
             self._trainers, sync_mode_str, mem_opt_str)
        tr1_cmd = tr_cmd % \
            (self._python_interp, model_file, self._ps_endpoints,
             1, ps1_ep,
             self._trainers, sync_mode_str, mem_opt_str)
X
Xin Pan 已提交
256

X
clean  
Xin Pan 已提交
257 258
        env0 = {"CUDA_VISIBLE_DEVICES": "0"}
        env1 = {"CUDA_VISIBLE_DEVICES": "1"}
X
Xin Pan 已提交
259 260 261 262
        env0.update(required_envs)
        env1.update(required_envs)
        FNULL = open(os.devnull, 'w')

G
gongweibao 已提交
263 264 265 266 267 268 269 270
        tr0_pipe = subprocess.PIPE
        tr1_pipe = subprocess.PIPE
        if check_error_log:
            print("tr0_cmd:", tr0_cmd)
            print("tr1_cmd:", tr1_cmd)
            tr0_pipe = open("/tmp/tr0_err.log", "wb")
            tr1_pipe = open("/tmp/tr1_err.log", "wb")

X
Xin Pan 已提交
271
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
272
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
273
            stdout=subprocess.PIPE,
G
gongweibao 已提交
274
            stderr=tr0_pipe,
X
Xin Pan 已提交
275 276
            env=env0)
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
277
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
278
            stdout=subprocess.PIPE,
G
gongweibao 已提交
279
            stderr=tr1_pipe,
X
Xin Pan 已提交
280 281 282 283 284 285
            env=env1)

        tr0_proc.wait()
        tr1_proc.wait()
        out, err = tr0_proc.communicate()
        sys.stderr.write('dist_stderr: %s\n' % err)
M
minqiyang 已提交
286
        loss_data0 = cpt.to_text(out)
X
Xin Pan 已提交
287 288 289 290 291 292 293 294 295
        sys.stderr.write('dist_loss: %s\n' % loss_data0)
        lines = loss_data0.split("\n")
        dist_first_loss = eval(lines[0].replace(" ", ","))[0]
        dist_last_loss = eval(lines[1].replace(" ", ","))[0]

        local_lines = local_ret.split("\n")
        local_first_loss = eval(local_lines[0])[0]
        local_last_loss = eval(local_lines[1])[0]

G
gongweibao 已提交
296 297 298 299 300 301 302
        # close trainer file
        if check_error_log:
            tr0_pipe.close()
            tr1_pipe.close()

            ps0_pipe.close()
            ps1_pipe.close()
T
typhoonzero 已提交
303
        # FIXME: use terminate() instead of sigkill.
X
Xin Pan 已提交
304 305
        os.kill(ps0.pid, signal.SIGKILL)
        os.kill(ps1.pid, signal.SIGKILL)
W
Wu Yi 已提交
306 307
        ps0.wait()
        ps1.wait()
X
Xin Pan 已提交
308
        FNULL.close()
T
typhoonzero 已提交
309 310 311

        self.assertAlmostEqual(local_first_loss, dist_first_loss, delta=delta)
        self.assertAlmostEqual(local_last_loss, dist_last_loss, delta=delta)