decayed_adagrad_op.cc 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/decayed_adagrad_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
21 22 23 24
class DecayedAdagradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext *ctx) const override {
26 27 28 29 30 31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of DecayedAdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of DecayedAdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Moment"),
                   "Input(Moment) of DecayedAdagradOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasInput("LearningRate"),
        "Input(LearningRate) of DecayedAdagradOp should not be null.");
C
chengduo 已提交
35 36 37 38 39 40 41 42 43 44
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Param").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front());
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Grad").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Grad").front(), ctx->GetInputsVarType("Grad").front());
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of DecayedAdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
                   "Output(MomentOut) of DecayedAdagradOp should not be null.");

    auto lr_dims = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
                      "LearningRate should have one element");
    auto param_dims = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(param_dims, ctx->GetInputDim("Grad"),
                      "Param and Grad input of DecayedAdagradOp should have "
                      "the same dimension.");
    PADDLE_ENFORCE_EQ(param_dims, ctx->GetInputDim("Moment"),
                      "Param and Moment input of DecayedAdagradOp should have "
                      "the same dimension.");

    ctx->SetOutputDim("ParamOut", param_dims);
    ctx->SetOutputDim("MomentOut", param_dims);
  }
D
dzhwinter 已提交
65 66
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
M
minqiyang 已提交
67 68
    return framework::OpKernelType(ctx.Input<Tensor>("Param")->type(),
                                   ctx.GetPlace());
D
dzhwinter 已提交
69
  }
70 71 72 73
};

class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
74
  void Make() override {
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("Moment", "(Tensor) Second moment");
    AddInput("LearningRate", "(Tensor) Learning rate");

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("MomentOut", "(Tensor) Output second moment");

    AddAttr<float>("decay",
                   "(float, default 0.95) "
                   "Discounting factor for coming gradient")
        .SetDefault(0.95);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-6f);
    AddComment(R"DOC(
K
Kexin Zhao 已提交
92
Decayed Adagrad Optimizer.
93

K
Kexin Zhao 已提交
94
The update is done as follows:
95

K
Kexin Zhao 已提交
96 97 98 99 100 101 102 103
$$
moment\_out = decay * moment + (1 - decay) * grad * grad \\
param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + epsilon}
$$

The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
does not have an epsilon attribute. It is added here for numerical
stability to avoid the division by zero error.
104 105 106 107 108 109 110 111 112 113 114 115

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(decayed_adagrad, ops::DecayedAdagradOp,
                             ops::DecayedAdagradOpMaker);
REGISTER_OP_CPU_KERNEL(
    decayed_adagrad,
Q
QI JUN 已提交
116
    ops::DecayedAdagradOpKernel<paddle::platform::CPUDeviceContext, float>);