tensor_array_read_write_op.cc 7.7 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include "paddle/operators/array_operator.h"
Y
Yang Yang(Tony) 已提交
15
#include "paddle/operators/detail/safe_ref.h"
Y
Yu Yang 已提交
16 17 18
namespace paddle {
namespace operators {

Y
Yang Yu 已提交
19
class WriteToArrayOp : public ArrayOp {
Y
Yu Yang 已提交
20 21 22 23 24
 public:
  WriteToArrayOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
25
      : ArrayOp(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
26 27

  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
28
           const platform::Place &place) const override {
Y
Yu Yang 已提交
29
    auto *x = scope.FindVar(Input("X"));
30
    if (x == nullptr) return;
Y
Yu Yang 已提交
31
    auto &x_tensor = x->Get<framework::LoDTensor>();
D
dzhwinter 已提交
32
    size_t offset = GetOffset(scope, place);
Y
Yu Yang 已提交
33 34 35
    auto *out =
        scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensorArray>();
    if (offset >= out->size()) {
Y
Yang Yang(Tony) 已提交
36 37
      VLOG(10) << "Resize " << Output("Out") << " from " << out->size()
               << " to " << offset + 1;
Y
Yu Yang 已提交
38 39
      out->resize(offset + 1);
    }
40 41
    if (x_tensor.memory_size() > 0) {
      auto *out_tensor = &out->at(offset);
D
dzhwinter 已提交
42

Y
Yang Yu 已提交
43 44 45
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto &dev_ctx = *pool.Get(place);
D
dzhwinter 已提交
46

47
      Copy(x_tensor, place, dev_ctx, out_tensor);
48 49 50 51 52 53
      out_tensor->set_lod(x_tensor.lod());
    } else {
      VLOG(10) << "WARNING: The input tensor 'x_tensor' holds no memory, so "
                  "nothing has been written to output array["
               << offset << "].";
    }
Y
Yu Yang 已提交
54 55 56 57 58
  }
};

class WriteToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
59
  WriteToArrayOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
60 61 62 63 64 65 66
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(LoDTensor) the tensor will be written to tensor array");
    AddInput(
        "I",
        "(Tensor) the subscript index in tensor array. The number of element "
        "should be 1");
    AddOutput("Out", "(TensorArray) the tensor array will be written");
67 68
    AddComment(R"DOC(
WriteToArray Operator.
Y
Yu Yang 已提交
69

70 71 72
This operator writes a LoDTensor to a LoDTensor array.

Assume $T$ is LoDTensor, $i$ is the subscript of the array, and $A$ is the array. The
Y
Yu Yang 已提交
73 74
equation is

75 76
$$A[i] = T$$

Y
Yu Yang 已提交
77 78 79 80 81 82 83 84 85 86
)DOC");
  }
};

class WriteToArrayInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("I"), "Must set the subscript index");
    PADDLE_ENFORCE_EQ(framework::product(context->GetInputDim("I")), 1,
                      "The number of element of subscript index must be 1");
87 88 89
    if (!context->HasInput("X")) {
      return;
    }
Y
Yu Yang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103
    PADDLE_ENFORCE(context->HasOutput("Out"), NotHasOutError());
    context->SetOutputDim("Out", context->GetInputDim("X"));
  }

 protected:
  virtual const char *NotHasXError() const { return "Must set the lod tensor"; }

  virtual const char *NotHasOutError() const {
    return "Must set the lod tensor array";
  }
};

class WriteToArrayInferVarType : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
104 105
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
Y
Yang Yang(Tony) 已提交
106 107 108
    auto x_name = op_desc.Input("X")[0];
    auto out_name = op_desc.Output("Out")[0];
    VLOG(10) << "Set Variable " << out_name << " as LOD_TENSOR_ARRAY";
Y
Yang Yu 已提交
109
    auto &out = block->FindRecursiveOrCreateVar(out_name);
110
    out.SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY);
111 112 113 114
    auto *x = block->FindVarRecursive(x_name);
    if (x != nullptr) {
      out.SetDataType(x->GetDataType());
    }
Y
Yu Yang 已提交
115 116 117
  }
};

Y
Yang Yu 已提交
118
class ReadFromArrayOp : public ArrayOp {
Y
Yu Yang 已提交
119 120 121 122 123
 public:
  ReadFromArrayOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
124
      : ArrayOp(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
125
  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
126
           const platform::Place &place) const override {
Y
Yu Yang 已提交
127 128 129 130 131
    auto *x = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x != nullptr, "X must be set");
    auto &x_array = x->Get<framework::LoDTensorArray>();
    auto *out = scope.FindVar(Output("Out"));
    PADDLE_ENFORCE(out != nullptr, "Out must be set");
D
dzhwinter 已提交
132
    size_t offset = GetOffset(scope, place);
133
    if (offset < x_array.size()) {
Y
Refine  
Yang Yu 已提交
134
      auto *out_tensor = out->GetMutable<framework::LoDTensor>();
Y
Yang Yu 已提交
135 136 137
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto &dev_ctx = *pool.Get(place);
138
      framework::Copy(x_array[offset], place, dev_ctx, out_tensor);
139 140 141 142
      out_tensor->set_lod(x_array[offset].lod());
    } else {
      VLOG(10) << "offset " << offset << " >= " << x_array.size();
    }
Y
Yu Yang 已提交
143 144 145 146 147
  }
};

class ReadFromArrayProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
148
  ReadFromArrayProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
149 150 151 152 153 154
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(TensorArray) the array will be read from.");
    AddInput("I",
             "(Tensor) the subscript index in tensor array. The number of "
             "element should be 1");
    AddOutput("Out", "(LoDTensor) the tensor will be read from.");
155 156
    AddComment(R"DOC(
ReadFromArray Operator.
Y
Yu Yang 已提交
157

158 159 160
Read a LoDTensor from a LoDTensor Array.

Assume $T$ is LoDTensor, $i$ is the subscript of the array, and $A$ is the array. The
Y
Yu Yang 已提交
161 162
equation is

163 164
$$T = A[i]$$

Y
Yu Yang 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
)DOC");
  }
};

class ReadFromArrayInferShape : public WriteToArrayInferShape {
 protected:
  const char *NotHasXError() const override {
    return "The input array X must be set";
  }
  const char *NotHasOutError() const override {
    return "The output tensor out must be set";
  }
};

class WriteToArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
184 185
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
186 187 188 189 190
    grad_op->SetType("read_from_array");
    grad_op->SetInput("I", Input("I"));
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
191
    return std::unique_ptr<framework::OpDesc>(grad_op);
Y
Yu Yang 已提交
192 193 194 195 196 197 198 199
  }
};

class ReadFromArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
200 201
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
202 203 204 205 206
    grad_op->SetType("write_to_array");
    grad_op->SetInput("I", Input("I"));
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
207
    return std::unique_ptr<framework::OpDesc>(grad_op);
Y
Yu Yang 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(write_to_array, ops::WriteToArrayOp,
                  ops::WriteToArrayInferShape, ops::WriteToArrayOpProtoMaker,
                  ops::WriteToArrayGradMaker, ops::WriteToArrayInferVarType);
REGISTER_OPERATOR(read_from_array, ops::ReadFromArrayOp,
                  ops::ReadFromArrayInferShape, ops::ReadFromArrayProtoMaker,
                  ops::ReadFromArrayGradMaker);