yolov3.py 10.5 KB
Newer Older
1 2
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17
import os
import sys

18
from darknet import ConvBNLayer, DarkNet53_conv_body
19

20
import paddle
21 22 23
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
24
from paddle.jit.api import declarative
25 26 27 28


class AttrDict(dict):
    def __init__(self, *args, **kwargs):
29
        super().__init__(*args, **kwargs)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

    def __getattr__(self, name):
        if name in self.__dict__:
            return self.__dict__[name]
        elif name in self:
            return self[name]
        else:
            raise AttributeError(name)

    def __setattr__(self, name, value):
        if name in self.__dict__:
            self.__dict__[name] = value
        else:
            self[name] = value


#
# Training options
#
cfg = AttrDict()
# Snapshot period
cfg.snapshot_iter = 2000
# min valid area for gt boxes
cfg.gt_min_area = -1
# max target box number in an image
cfg.max_box_num = 50
# valid score threshold to include boxes
cfg.valid_thresh = 0.005
# threshold vale for box non-max suppression
cfg.nms_thresh = 0.45
# the number of top k boxes to perform nms
cfg.nms_topk = 400
# the number of output boxes after nms
cfg.nms_posk = 100
# score threshold for draw box in debug mode
cfg.draw_thresh = 0.5
# Use label smooth in class label
cfg.label_smooth = True
#
# Model options
#
# input size
72
cfg.input_size = 224 if sys.platform == 'darwin' else 608
73 74 75 76 77 78
# pixel mean values
cfg.pixel_means = [0.485, 0.456, 0.406]
# pixel std values
cfg.pixel_stds = [0.229, 0.224, 0.225]
# anchors box weight and height
cfg.anchors = [
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    10,
    13,
    16,
    30,
    33,
    23,
    30,
    61,
    62,
    45,
    59,
    119,
    116,
    90,
    156,
    198,
    373,
    326,
97 98 99 100
]
# anchor mask of each yolo layer
cfg.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
# IoU threshold to ignore objectness loss of pred box
101
cfg.ignore_thresh = 0.7
102 103 104 105
#
# SOLVER options
#
# batch size
106
cfg.batch_size = 1 if sys.platform == 'darwin' or os.name == 'nt' else 4
107 108 109
# derived learning rate the to get the final learning rate.
cfg.learning_rate = 0.001
# maximum number of iterations
110
cfg.max_iter = 20 if fluid.is_compiled_with_cuda() else 1
111 112
# Disable mixup in last N iter
cfg.no_mixup_iter = 10 if fluid.is_compiled_with_cuda() else 1
113
# warm up to learning rate
114
cfg.warm_up_iter = 10 if fluid.is_compiled_with_cuda() else 1
115
cfg.warm_up_factor = 0.0
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
# lr steps_with_decay
cfg.lr_steps = [400000, 450000]
cfg.lr_gamma = 0.1
# L2 regularization hyperparameter
cfg.weight_decay = 0.0005
# momentum with SGD
cfg.momentum = 0.9
#
# ENV options
#
# support both CPU and GPU
cfg.use_gpu = fluid.is_compiled_with_cuda()
# Class number
cfg.class_num = 80


class YoloDetectionBlock(fluid.dygraph.Layer):
    def __init__(self, ch_in, channel, is_test=True):
134
        super().__init__()
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        assert channel % 2 == 0, "channel {} cannot be divided by 2".format(
            channel
        )

        self.conv0 = ConvBNLayer(
            ch_in=ch_in,
            ch_out=channel,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test,
        )
        self.conv1 = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test,
        )
        self.conv2 = ConvBNLayer(
            ch_in=channel * 2,
            ch_out=channel,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test,
        )
        self.conv3 = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test,
        )
        self.route = ConvBNLayer(
            ch_in=channel * 2,
            ch_out=channel,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test,
        )
        self.tip = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test,
        )
188 189 190 191 192 193 194 195 196 197 198 199 200

    def forward(self, inputs):
        out = self.conv0(inputs)
        out = self.conv1(out)
        out = self.conv2(out)
        out = self.conv3(out)
        route = self.route(out)
        tip = self.tip(route)
        return route, tip


class Upsample(fluid.dygraph.Layer):
    def __init__(self, scale=2):
201
        super().__init__()
202 203 204 205
        self.scale = scale

    def forward(self, inputs):
        # get dynamic upsample output shape
2
201716010711 已提交
206
        shape_nchw = paddle.shape(inputs)
2
201716010711 已提交
207
        shape_hw = paddle.slice(shape_nchw, axes=[0], starts=[2], ends=[4])
208 209 210 211 212 213
        shape_hw.stop_gradient = True
        in_shape = fluid.layers.cast(shape_hw, dtype='int32')
        out_shape = in_shape * self.scale
        out_shape.stop_gradient = True

        # reisze by actual_shape
214 215
        out = paddle.nn.functional.interpolate(
            x=inputs, size=out_shape, mode='nearest'
216
        )
217

218 219 220 221 222
        return out


class YOLOv3(fluid.dygraph.Layer):
    def __init__(self, ch_in, is_train=True, use_random=False):
223
        super().__init__()
224 225 226 227 228 229 230 231 232 233 234 235

        self.is_train = is_train
        self.use_random = use_random

        self.block = DarkNet53_conv_body(ch_in=ch_in, is_test=not self.is_train)
        self.block_outputs = []
        self.yolo_blocks = []
        self.route_blocks_2 = []
        ch_in_list = [1024, 768, 384]
        for i in range(3):
            yolo_block = self.add_sublayer(
                "yolo_detecton_block_%d" % (i),
236 237 238 239 240 241
                YoloDetectionBlock(
                    ch_in_list[i],
                    channel=512 // (2**i),
                    is_test=not self.is_train,
                ),
            )
242 243 244 245 246 247
            self.yolo_blocks.append(yolo_block)

            num_filters = len(cfg.anchor_masks[i]) * (cfg.class_num + 5)

            block_out = self.add_sublayer(
                "block_out_%d" % (i),
248 249 250 251
                paddle.nn.Conv2D(
                    in_channels=1024 // (2**i),
                    out_channels=num_filters,
                    kernel_size=1,
252 253
                    stride=1,
                    padding=0,
254
                    weight_attr=ParamAttr(
255 256 257 258 259 260 261 262
                        initializer=fluid.initializer.Normal(0.0, 0.02)
                    ),
                    bias_attr=ParamAttr(
                        initializer=fluid.initializer.Constant(0.0),
                        regularizer=L2Decay(0.0),
                    ),
                ),
            )
263 264 265 266
            self.block_outputs.append(block_out)
            if i < 2:
                route = self.add_sublayer(
                    "route2_%d" % i,
267 268 269 270 271 272 273 274 275
                    ConvBNLayer(
                        ch_in=512 // (2**i),
                        ch_out=256 // (2**i),
                        filter_size=1,
                        stride=1,
                        padding=0,
                        is_test=(not self.is_train),
                    ),
                )
276 277 278 279
                self.route_blocks_2.append(route)
            self.upsample = Upsample()

    @declarative
280 281 282 283 284 285 286 287 288
    def forward(
        self,
        inputs,
        gtbox=None,
        gtlabel=None,
        gtscore=None,
        im_id=None,
        im_shape=None,
    ):
289 290 291 292 293 294 295 296
        self.outputs = []
        self.boxes = []
        self.scores = []
        self.losses = []
        self.downsample = 32
        blocks = self.block(inputs)
        for i, block in enumerate(blocks):
            if i > 0:
297 298 299
                block = fluid.layers.concat(
                    input=[route, block], axis=1  # noqa: F821
                )
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
            route, tip = self.yolo_blocks[i](block)
            block_out = self.block_outputs[i](tip)
            self.outputs.append(block_out)

            if i < 2:
                route = self.route_blocks_2[i](route)
                route = self.upsample(route)
        self.gtbox = gtbox
        self.gtlabel = gtlabel
        self.gtscore = gtscore
        self.im_id = im_id
        self.im_shape = im_shape

        # cal loss
        for i, out in enumerate(self.outputs):
            anchor_mask = cfg.anchor_masks[i]
            if self.is_train:
                loss = fluid.layers.yolov3_loss(
                    x=out,
                    gt_box=self.gtbox,
                    gt_label=self.gtlabel,
                    gt_score=self.gtscore,
                    anchors=cfg.anchors,
                    anchor_mask=anchor_mask,
                    class_num=cfg.class_num,
                    ignore_thresh=cfg.ignore_thresh,
                    downsample_ratio=self.downsample,
327 328
                    use_label_smooth=cfg.label_smooth,
                )
329
                self.losses.append(paddle.mean(loss))
330 331 332 333 334 335 336 337 338 339 340 341 342

            else:
                mask_anchors = []
                for m in anchor_mask:
                    mask_anchors.append(cfg.anchors[2 * m])
                    mask_anchors.append(cfg.anchors[2 * m + 1])
                boxes, scores = fluid.layers.yolo_box(
                    x=out,
                    img_size=self.im_shape,
                    anchors=mask_anchors,
                    class_num=cfg.class_num,
                    conf_thresh=cfg.valid_thresh,
                    downsample_ratio=self.downsample,
343 344
                    name="yolo_box" + str(i),
                )
345
                self.boxes.append(boxes)
346
                self.scores.append(paddle.transpose(scores, perm=[0, 2, 1]))
347 348
            self.downsample //= 2

349 350 351 352 353
        if not self.is_train:
            # get pred
            yolo_boxes = fluid.layers.concat(self.boxes, axis=1)
            yolo_scores = fluid.layers.concat(self.scores, axis=2)

354 355 356 357 358 359 360 361 362
            pred = fluid.layers.multiclass_nms(
                bboxes=yolo_boxes,
                scores=yolo_scores,
                score_threshold=cfg.valid_thresh,
                nms_top_k=cfg.nms_topk,
                keep_top_k=cfg.nms_posk,
                nms_threshold=cfg.nms_thresh,
                background_label=-1,
            )
363 364 365
            return pred
        else:
            return sum(self.losses)