fleet_wrapper.cc 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
X
xujiaqi01 已提交
30
#include <utility>
31
#include "paddle/fluid/framework/data_feed.h"
32
#include "paddle/fluid/framework/scope.h"
33 34 35 36 37 38

namespace paddle {
namespace framework {

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
39 40
bool FleetWrapper::is_initialized_ = false;

41
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
42 43 44
template <class AR>
paddle::ps::Archive<AR>& operator<<(paddle::ps::Archive<AR>& ar,
                                    const MultiSlotType& ins) {
45 46 47 48
  ar << ins.GetType();
  ar << ins.GetOffset();
  ar << ins.GetFloatData();
  ar << ins.GetUint64Data();
X
xujiaqi01 已提交
49
  return ar;
50 51
}

D
dongdaxiang 已提交
52 53 54
template <class AR>
paddle::ps::Archive<AR>& operator>>(paddle::ps::Archive<AR>& ar,
                                    MultiSlotType& ins) {
55 56 57 58
  ar >> ins.MutableType();
  ar >> ins.MutableOffset();
  ar >> ins.MutableFloatData();
  ar >> ins.MutableUint64Data();
X
xujiaqi01 已提交
59
  return ar;
60 61 62
}
#endif

63 64 65
#ifdef PADDLE_WITH_PSLIB
std::shared_ptr<paddle::distributed::PSlib> FleetWrapper::pslib_ptr_ = NULL;
#endif
66 67 68 69

void FleetWrapper::InitServer(const std::string& dist_desc, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
70
    VLOG(3) << "Going to init server";
71 72 73 74 75
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_server(dist_desc, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
76
    VLOG(3) << "Server can be initialized only once";
77 78 79 80 81 82 83 84 85
  }
#endif
}

void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<uint64_t>& host_sign_list,
                              int node_num, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
86
    VLOG(3) << "Going to init worker";
87 88 89 90 91 92 93
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_worker(dist_desc,
                            const_cast<uint64_t*>(host_sign_list.data()),
                            node_num, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
94
    VLOG(3) << "Worker can be initialized only once";
95 96 97 98 99 100
  }
#endif
}

void FleetWrapper::StopServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
101
  VLOG(3) << "Going to stop server";
102 103 104 105 106 107
  pslib_ptr_->stop_server();
#endif
}

uint64_t FleetWrapper::RunServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
108
  VLOG(3) << "Going to run server";
109 110 111 112 113 114 115 116 117
  return pslib_ptr_->run_server();
#else
  return 0;
#endif
}

void FleetWrapper::GatherServers(const std::vector<uint64_t>& host_sign_list,
                                 int node_num) {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
118
  VLOG(3) << "Going to gather server ips";
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  pslib_ptr_->gather_servers(const_cast<uint64_t*>(host_sign_list.data()),
                             node_num);
#endif
}

void FleetWrapper::PullSparseVarsSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<::std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
    fea_values->resize(fea_keys->size() + 1);
    for (auto& t : *fea_values) {
      t.resize(fea_value_dim);
    }
    std::vector<float*> pull_result_ptr;
    for (auto& t : *fea_values) {
      pull_result_ptr.push_back(t.data());
    }
    auto status = pslib_ptr_->_worker_ptr->pull_sparse(
        pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size());
    pull_sparse_status.push_back(std::move(status));
  }
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      exit(-1);
    }
  }
#endif
}

void FleetWrapper::PullDenseVarsAsync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* pull_dense_status) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
174 175 176
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    Variable* var = scope.FindVar(var_names[i]);
177 178 179
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
180
    regions[i] = std::move(reg);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  pull_dense_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PullDenseVarsSync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  status.wait();
#endif
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void FleetWrapper::PushDenseParamSync(
    const ProgramDesc& program, const uint64_t table_id,
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
  paddle::framework::Scope scope;
  auto& block = program.Block(0);
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = scope.Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    } else {
      auto* ptr = scope.Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    }
  }
  auto place = platform::CPUPlace();
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    std::vector<int64_t> dim;
    for (auto& var : block.AllVars()) {
      if (var->Name() == t) {
        dim = var->GetShape();
        break;
      }
    }
    int cnt = 1;
    for (auto& i: dim) {
        cnt *= i;
    }
    DDim d(std::vector<int64_t>{cnt}.data(), 1);
    float* g = tensor->mutable_data<float>(d, place);
    CHECK(g != nullptr) << "var[" << t << "] value not initialized";
    float init_range = 0.2;
    int rown = tensor->dims()[0];
    init_range /= sqrt(rown);
    std::normal_distribution<float> ndistr(0.0, 1.0);
    for (auto i = 0u; i < tensor->numel(); ++i) {
      g[i] = ndistr(LocalRandomEngine()) * init_range;
    }
    paddle::ps::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
    auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
        regions.data(), regions.size(), table_id);
    push_status.wait();
    auto status = push_status.get();
    CHECK(status == 0) << "push dense param failed, status["
                       << status << "]";
  }
#endif
}

D
dongdaxiang 已提交
261 262 263 264
void FleetWrapper::PushDenseVarsSync(
    Scope* scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
void FleetWrapper::PushDenseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* push_sparse_status) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
  auto status = pslib_ptr_->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
  push_sparse_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys, const std::vector<float>& fea_labels,
    const std::vector<std::string>& sparse_key_names,
    const std::vector<std::string>& sparse_grad_names, const int emb_dim,
    std::vector<std::vector<float>>* push_values,
    std::vector<::std::future<int32_t>>* push_sparse_status) {
#ifdef PADDLE_WITH_PSLIB
  int offset = 2;
  uint64_t fea_idx = 0u;
  for (size_t i = 0; i < sparse_key_names.size(); ++i) {
296 297 298 299
    LOG(WARNING) << "sparse key names[" << i << "]: " << sparse_key_names[i];
    LOG(WARNING) << "sparse grad names[" << i << "]: " << sparse_grad_names[i];
    Variable* g_var = scope.FindVar(sparse_grad_names[i]);
    CHECK(g_var != nullptr) << "var[" << sparse_grad_names[i] << "] not found";
300 301 302 303 304 305 306 307 308 309 310 311 312 313
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == NULL) {
      LOG(ERROR) << "var[" << sparse_key_names[i] << "] not found";
      exit(-1);
    }
    float* g = g_tensor->data<float>();
    Variable* var = scope.FindVar(sparse_key_names[i]);
    CHECK(var != nullptr) << "var[" << sparse_key_names[i] << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    if (tensor == NULL) {
      LOG(ERROR) << "var[" << sparse_key_names[i] << "] not found";
      exit(-1);
    }
    int len = tensor->numel();
314
    LOG(WARNING) << " tensor len: " << len;
315
    int64_t* ids = tensor->data<int64_t>();
316 317 318 319 320
    push_values->resize(fea_keys.size() + 1);
    for (auto& t : *push_values) {
      t.resize(emb_dim + offset);
    }

321 322 323 324 325
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += emb_dim;
        continue;
      }
326
      LOG(WARNING) << "going to memcpy";
327 328
      CHECK(fea_idx < (*push_values).size());
      CHECK(fea_idx < fea_labels.size());
329 330
      memcpy((*push_values)[fea_idx].data() + offset, g,
             sizeof(float) * emb_dim);
331
      LOG(WARNING) << "show";
332
      (*push_values)[fea_idx][0] = 1.0f;
333
      LOG(WARNING) << "click";
334
      (*push_values)[fea_idx][1] = static_cast<float>(fea_labels[fea_idx]);
335
      LOG(WARNING) << "offset";
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
      g += emb_dim;
      fea_idx++;
    }
  }
  CHECK(fea_idx == fea_keys.size()) << "fea_idx: " << fea_idx
                                    << "features size: " << fea_keys.size();
  std::vector<float*> push_g_vec;
  for (auto i = 0u; i < fea_keys.size(); ++i) {
    push_g_vec.push_back((*push_values)[i].data());
  }
  auto status = pslib_ptr_->_worker_ptr->push_sparse(
      table_id, fea_keys.data(), (const float**)push_g_vec.data(),
      fea_keys.size());
  push_sparse_status->push_back(std::move(status));

#endif
}

354 355
int FleetWrapper::RegisterClientToClientMsgHandler(
    int msg_type, MsgHandlerFunc handler) {
356
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
357 358 359
  VLOG(3) << "calling FleetWrapper::RegisterClientToClientMsgHandler";
  VLOG(3) << "pslib_ptr_=" << pslib_ptr_;
  VLOG(3) << "_worker_ptr=" << pslib_ptr_->_worker_ptr;
360
  return pslib_ptr_->_worker_ptr->registe_client2client_msg_handler(msg_type, handler);
361 362 363 364
#else
  VLOG(0) << "FleetWrapper::RegisterClientToClientMsgHandler"
          << " does nothing when no pslib";
#endif
X
xujiaqi01 已提交
365
  return 0;
366 367
}

368 369
std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
370
#ifdef PADDLE_WITH_PSLIB
371
  return pslib_ptr_->_worker_ptr->send_client2client_msg(msg_type, to_client_id, msg);
372 373 374 375
#else
  VLOG(0) << "FleetWrapper::SendClientToClientMsg"
          << " does nothing when no pslib";
#endif
376
  return std::future<int32_t>();
X
xujiaqi01 已提交
377 378
}

379
std::default_random_engine& FleetWrapper::LocalRandomEngine() {
X
xujiaqi01 已提交
380 381 382 383 384 385 386
  struct engine_wrapper_t {
    std::default_random_engine engine;
    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
D
dongdaxiang 已提交
387
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
X
xujiaqi01 已提交
388 389 390 391 392
      engine.seed(sseq);
    }
  };
  thread_local engine_wrapper_t r;
  return r.engine;
393 394
}

D
dongdaxiang 已提交
395
template <typename T>
396
void FleetWrapper::Serialize(const std::vector<T*>& t, std::string* str) {
397 398
#ifdef PADDLE_WITH_PSLIB
  paddle::ps::BinaryArchive ar;
399 400 401
  for (size_t i = 0; i < t.size(); ++i) {
    ar << *(t[i]);
  }
X
xujiaqi01 已提交
402
  *str = std::string(ar.buffer(), ar.length());
403
#else
404
  VLOG(0) << "FleetWrapper::Serialize does nothing when no pslib";
405 406 407
#endif
}

D
dongdaxiang 已提交
408
template <typename T>
409
void FleetWrapper::Deserialize(std::vector<T>* t, const std::string& str) {
410
#ifdef PADDLE_WITH_PSLIB
411 412 413
  if (str.length() == 0) {
    return;
  }
414 415
  paddle::ps::BinaryArchive ar;
  ar.set_read_buffer(const_cast<char*>(str.c_str()), str.length(), nullptr);
416 417 418 419 420 421 422 423
  if (ar.cursor() == ar.finish()) {
    return;
  }
  while (ar.cursor() < ar.finish()) {
    t->push_back(ar.get<T>());
  }
  CHECK(ar.cursor() == ar.finish());
  VLOG(3) << "Deserialize size " << t->size();
424
#else
425
  VLOG(0) << "FleetWrapper::Deserialize does nothing when no pslib";
426 427 428 429
#endif
}

template void FleetWrapper::Serialize<std::vector<MultiSlotType>>(
430 431 432
    const std::vector<std::vector<MultiSlotType>*>&, std::string*);
template void FleetWrapper::Deserialize<std::vector<MultiSlotType>>(
    std::vector<std::vector<MultiSlotType>>*, const std::string&);
433

434 435
}  // end namespace framework
}  // end namespace paddle