function.h 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <string>

19 20
#include "paddle/contrib/tape/tape.h"
#include "paddle/contrib/tape/variable.h"
21 22 23
#include "paddle/fluid/framework/type_defs.h"

namespace paddle {
24
namespace tape {
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

class Function {};

class Fill {
 public:
  Fill(const std::string &initializer, const framework::AttributeMap &attrs)
      : initializer_(initializer), attrs_(attrs) {}

  void operator()(VariableHandle var) {
    get_global_tape().AddOp(initializer_, {}, {{"Out", {var}}}, attrs_);
  }

 private:
  const std::string initializer_;
  const framework::AttributeMap attrs_;
};

class Mean {
 public:
  VariableHandle operator()(VariableHandle var) {
    VariableHandle out(new Variable("mean"));
    get_global_tape().AddOp("mean", {{"X", {var}}}, {{"Out", {out}}}, {});
    return out;
  }
};

class Linear {
 public:
  Linear(int in_dim, int out_dim, const std::string &act)
      : w_(new Variable("LinearWeight")),
        b_(new Variable("LinearBias")),
        act_(act) {
    Tape init_tape;

    std::string initializer = "fill_constant";
    framework::AttributeMap attrs;
    attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
    attrs["shape"] = std::vector<int>{in_dim, out_dim};
    attrs["value"] = 1.0f;
    init_tape.AddOp(initializer, {}, {{"Out", {w_}}}, attrs);

    attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
    attrs["shape"] = std::vector<int>{out_dim};
    attrs["value"] = 1.0f;
    init_tape.AddOp(initializer, {}, {{"Out", {b_}}}, attrs);

    init_tape.Forward();
  }

  VariableHandle operator()(VariableHandle input) {
    VariableHandle pre_bias(new Variable("linear"));
    get_global_tape().AddOp("mul",
                            {{"X", {input}}, {"Y", {w_}}},
                            {{"Out", {pre_bias}}},
                            {{"x_num_col_dims", 1}, {"y_num_col_dims", 1}});
    VariableHandle pre_act(new Variable("linear"));
    get_global_tape().AddOp("elementwise_add",
                            {{"X", {pre_bias}}, {"Y", {b_}}},
                            {{"Out", {pre_act}}},
                            {{"axis", 1}});
    VariableHandle post_act(new Variable("linear"));
    get_global_tape().AddOp(
        act_, {{"X", {pre_act}}}, {{"Out", {post_act}}}, {});
    return post_act;
  }

  std::vector<VariableHandle> Params() { return {w_, b_}; }

 private:
  VariableHandle w_;
  VariableHandle b_;
  std::string act_;
};

class SGD {
 public:
  SGD(float learning_rate) : learning_rate_(new Variable("sgd")) {
    Tape init_tape;

    std::string initializer = "fill_constant";
    framework::AttributeMap attrs;
    attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
    attrs["shape"] = std::vector<int>{1};
    attrs["value"] = learning_rate;
    init_tape.AddOp(initializer, {}, {{"Out", {learning_rate_}}}, attrs);

    init_tape.Forward();
  }

  void operator()(VariableHandle input) {
    Tape temp_tape;
    temp_tape.AddOp("sgd",
                    {{"Param", {input}},
                     {"LearningRate", {learning_rate_}},
                     {"Grad", {input->Grad()}}},
                    {{"ParamOut", {input}}},
                    {});
    temp_tape.Forward();
    input->ResetGrad();
  }

 private:
  VariableHandle learning_rate_;
};
}
}