fc_compute_test.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/fc_compute.h"
#include <gtest/gtest.h>
T
tensor-tang 已提交
17 18 19 20 21
#include <algorithm>
#include <iostream>
#include <memory>
#include <random>
#include <utility>
22
#include <vector>
T
tensor-tang 已提交
23
#include "paddle/fluid/lite/arm/math/funcs.h"
24 25 26 27 28 29 30
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#define A(i, j) a[i * lda + j]
#define B(i, j) b[i * ldb + j]
#define C(i, j) c[i * ldc + j]

template <typename T>
void gemm_bias(const T* a, const int M, const int K, const T* b, const int K_,
               const int N, T* biases, T* c) {
  EXPECT_TRUE(K_ == K && M > 0 && N > 0 && K > 0);
  EXPECT_TRUE(a && b && c);
  const int lda = K;
  const int ldb = N;
  const int ldc = N;
  for (int m = 0; m < M; ++m) {
    for (int n = 0; n < N; ++n) {
      C(m, n) = 0.0f;
      for (int k = 0; k < K; ++k) {
        C(m, n) += A(m, k) * B(k, n);
      }
    }
  }
  if (biases) {
    for (int m = 0; m < M; ++m) {
      for (int n = 0; n < N; ++n) {
        C(m, n) += biases[n];
      }
    }
  }
}

T
tensor-tang 已提交
60 61 62 63 64 65 66 67 68 69 70
template <typename T>
void FillData(T* a, const int n, const T lower = static_cast<T>(-2.f),
              const T upper = static_cast<T>(2.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84
TEST(fc_arm, retrive_op) {
  auto fc =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>("fc");
  ASSERT_FALSE(fc.empty());
  ASSERT_TRUE(fc.front());
}

TEST(fc_arm, init) {
  FcCompute fc;
  ASSERT_EQ(fc.precision(), PRECISION(kFloat));
  ASSERT_EQ(fc.target(), TARGET(kARM));
}

TEST(fc_arm, compare_test) {
T
tensor-tang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  using T = float;

  for (int m : {1, 2, 3, 4}) {
    for (int n : {1, 2, 3, 4}) {
      for (int k : {1, 2, 3, 4}) {
        for (bool with_bias : {true, false}) {
          VLOG(3) << "m: " << m << ", n: " << n << ", k: " << k
                  << (with_bias ? ", with bias" : "");
          lite::Tensor x, w, b, out, ref;

          x.Resize({m, k});
          w.Resize({k, n});
          b.Resize({1, n});
          out.Resize({m, n});
          ref.Resize({m, n});

          auto* x_data = x.mutable_data<T>();
          auto* w_data = w.mutable_data<T>();
          auto* b_data = with_bias ? b.mutable_data<T>() : nullptr;

          auto* out_data = out.mutable_data<T>();
          auto* ref_data = ref.mutable_data<T>();

          FillData<T>(x_data, x.dims().production());
          FillData<T>(w_data, w.dims().production());
          FillData<T>(out_data, out.dims().production(), 0, 0);
          FillData<T>(ref_data, ref.dims().production(), 0, 0);

          if (with_bias) {
            FillData<T>(b_data, b.dims().production());
          }

          FcCompute fc;
          operators::FcParam param;

          param.input = &x;
          param.w = &w;
          param.bias = with_bias ? &b : nullptr;
          param.output = &out;
          param.in_num_col_dims = 1;
          param.in_mat_dims = x.dims();

          DeviceInfo::Init();
          std::unique_ptr<KernelContext> ctx(new KernelContext);
          ctx->As<ARMContext>();
          fc.SetParam(param);
          fc.SetContext(std::move(ctx));
          fc.PrepareForRun();
          fc.Run();

135 136
          gemm_bias<T>(x_data, m, k, w_data, k, n, b_data, ref_data);

T
tensor-tang 已提交
137 138 139 140 141 142
          for (int i = 0; i < out.dims().production(); i++) {
            EXPECT_NEAR(out_data[i], ref_data[i], 1e-3);
          }
        }
      }
    }
T
tensor-tang 已提交
143
  }
144 145
}

T
tensor-tang 已提交
146
TEST(fc_arm, num_col_dims) {
T
tensor-tang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  using T = float;

  for (bool with_bias : {true, false}) {
    lite::Tensor x, w, b, out, ref;

    x.Resize({1, 2, 3});
    w.Resize({3, 4});
    b.Resize({1, 4});
    out.Resize({2, 4});
    ref.Resize({2, 4});

    auto* x_data = x.mutable_data<float>();
    auto* w_data = w.mutable_data<float>();
    auto* b_data = with_bias ? b.mutable_data<T>() : nullptr;

    auto* out_data = out.mutable_data<T>();
    auto* ref_data = ref.mutable_data<T>();

    FillData<T>(x_data, x.dims().production());
    FillData<T>(w_data, w.dims().production());
    FillData<T>(out_data, out.dims().production(), 0, 0);
    FillData<T>(ref_data, ref.dims().production(), 0, 0);
    if (with_bias) {
      FillData<T>(b_data, b.dims().production());
    }
    FcCompute fc;
    operators::FcParam param;
    param.input = &x;
    param.w = &w;
    param.bias = with_bias ? &b : nullptr;
    param.output = &out;
    param.in_num_col_dims = 2;
    param.in_mat_dims = x.dims();

    std::unique_ptr<KernelContext> ctx(new KernelContext);
    ctx->As<ARMContext>();
    DeviceInfo::Init();

    fc.SetParam(param);
    fc.SetContext(std::move(ctx));
    fc.PrepareForRun();
    fc.Run();

190 191
    gemm_bias<T>(x_data, 2, 3, w_data, 3, 4, b_data, ref_data);

T
tensor-tang 已提交
192 193 194
    for (int i = 0; i < out.dims().production(); i++) {
      EXPECT_NEAR(out_data[i], ref_data[i], 1e-3);
    }
T
tensor-tang 已提交
195
  }
196 197 198 199 200 201 202 203
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(fc, kARM, kFloat, kNCHW, def);