reduce.h 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16 17 18

#include <set>

19
#include "paddle/pten/api/ext/dispatch.h"
20
#include "paddle/pten/backends/cpu/cpu_context.h"
21 22
#include "paddle/pten/kernels/cast_kernel.h"

23 24
#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/core/dense_tensor.h"
C
Chen Weihang 已提交
25 26
#include "paddle/pten/kernels/funcs/eigen/common.h"
#include "paddle/pten/kernels/funcs/transpose.h"
27 28
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/operators/eigen/eigen_function.h"
29 30
namespace pten {

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
template <typename DeviceContext,
          typename T,
          size_t D,
          size_t R_D,
          typename Functor>
void ReduceFunctor(const DeviceContext& context,
                   const pten::DenseTensor& input,
                   pten::DenseTensor* output,
                   const std::vector<int64_t>& dims,
                   bool keep_dim) {
  auto x = EigenTensor<T, D>::From(input);
  auto x_rank = static_cast<int>(x.dimensions().size());
  auto reduce_dim = Eigen::array<int, R_D>();
  std::vector<int64_t> dims_ref = dims;
  for (size_t i = 0; i < dims_ref.size(); ++i) {
    if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
    reduce_dim[i] = dims_ref[i];
  }
  // construct the squeezed output tensor
  DDim out_dims = output->dims();
  if (keep_dim && x_rank > 1) {
    const int kDelFlag = -2;
53
    auto dims_vector = pten::framework::vectorize(out_dims);
54 55 56 57 58
    for (size_t i = 0; i < dims_ref.size(); ++i) {
      dims_vector[dims_ref[i]] = kDelFlag;
    }
    dims_vector.erase(remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
                      dims_vector.end());
59
    out_dims = pten::framework::make_ddim(dims_vector);
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  }
  auto& place = *context.eigen_device();
  Functor functor;

  if (D == 1) {
    auto out = EigenScalar<T>::From(*output);
    functor(place, &x, &out, reduce_dim);
  } else {
    auto out = EigenTensor<T, (D - R_D)>::From(*output, out_dims);
    functor(place, &x, &out, reduce_dim);
  }
}

#define HANDLE_REDUCE_DIM(NDIM, RDIM)                        \
  if (ndim == NDIM && rdim == RDIM) {                        \
    ReduceFunctor<DeviceContext, OutT, NDIM, RDIM, Functor>( \
        dev_ctx, input, output, dims, keep_dim);             \
  }
//////////////// HandleLargeDim

inline void GetShuffledDim(const DDim& src_dims,
                           DDim* dst_dims,
                           const std::vector<int64_t>& reduced_dims,
                           std::vector<int64_t>* perm_axis) {
  // check if it's a reduced dim
  std::vector<bool> src_dims_check(src_dims.size(), false);
  size_t src_size = src_dims.size();
  size_t reduce_size = reduced_dims.size();
  std::vector<int64_t> regular_reduced_dims = reduced_dims;
  for (size_t i = 0; i < regular_reduced_dims.size(); i++) {
    if (regular_reduced_dims[i] < 0) {
      regular_reduced_dims[i] = src_size + regular_reduced_dims[i];
    }
  }

  for (size_t i = 0; i < reduce_size; ++i) {
    dst_dims->at(src_size - reduce_size + i) =
        src_dims[regular_reduced_dims[i]];
    (*perm_axis)[src_size - reduce_size + i] = regular_reduced_dims[i];
    src_dims_check[regular_reduced_dims[i]] = true;
  }

  size_t offset = 0;
  for (size_t i = 0; i < src_dims_check.size(); ++i) {
    bool is_reduced = src_dims_check[i];
    if (!is_reduced) {
      (*perm_axis)[offset] = i;
      dst_dims->at(offset++) = src_dims[i];
    }
  }
}

template <typename DeviceContext, typename OutT>
void GetShuffledInput(const DeviceContext& dev_ctx,
                      const pten::DenseTensor& input,
                      pten::DenseTensor* shuffled_input,
                      const std::vector<int64_t>& dims) {
  DDim shuffled_dims(input.dims());
  std::vector<int64_t> perm_axis(input.dims().size());
  GetShuffledDim(input.dims(), &shuffled_dims, dims, &perm_axis);

121
  shuffled_input->ResizeAndAllocate(shuffled_dims);
122
  shuffled_input->mutable_data<OutT>(dev_ctx.GetPlace());
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

  pten::math::TransposeNormal<DeviceContext, OutT> trans;
  trans(dev_ctx, input, shuffled_input, perm_axis);
}

template <typename DeviceContext, typename OutT, typename Functor>
void HandleLargeDim(const DeviceContext& dev_ctx,
                    const pten::DenseTensor& input,
                    pten::DenseTensor* output,
                    const std::vector<int64_t>& dims,
                    bool keep_dim) {
  //  shuffle the reduced dim to the end
  pten::DenseTensor shuffled_input = pten::DenseTensor(
      pten::make_intrusive<paddle::experimental::SharedStorage>(input.place()),
      input.meta());

  GetShuffledInput<DeviceContext, OutT>(dev_ctx, input, &shuffled_input, dims);

  // transpose to 2D tensor whose shape is {unreduced, reduced}.
  const int64_t unreduced = output->numel();
  const int64_t reduced = shuffled_input.numel() / unreduced;
144
  shuffled_input.ResizeAndAllocate({unreduced, reduced});
145
  DDim output_dim = output->dims();
146
  output->ResizeAndAllocate({unreduced});
147 148
  ReduceFunctor<DeviceContext, OutT, 2, 1, Functor>(
      dev_ctx, shuffled_input, output, {1}, keep_dim);
149
  output->ResizeAndAllocate(output_dim);
150 151 152 153 154 155 156 157 158 159 160
}

////////////// ReduceKernel

template <typename DeviceContext, typename T, typename OutT, typename Functor>
void ReduceKernelImpl(const DeviceContext& dev_ctx,
                      const pten::DenseTensor& input,
                      pten::DenseTensor* output,
                      const std::vector<int64_t>& dims,
                      bool keep_dim,
                      bool reduce_all) {
161
  output->mutable_data<OutT>(dev_ctx.GetPlace());
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

  if (reduce_all) {
    // Flatten and reduce 1-D tensor
    auto x = EigenVector<OutT>::Flatten(input);
    auto out = EigenScalar<OutT>::From(*output);
    auto& dev = *dev_ctx.eigen_device();
    auto reduce_dim = Eigen::array<int, 1>({{0}});

    Functor functor;
    functor(dev, &x, &out, reduce_dim);
  } else {
    int ndim = input.dims().size();
    int rdim = dims.size();
    if (ndim > 6) {
      HandleLargeDim<DeviceContext, OutT, Functor>(
          dev_ctx, input, output, dims, keep_dim);

    } else {
      HANDLE_REDUCE_DIM(6, 5);
      HANDLE_REDUCE_DIM(6, 4);
      HANDLE_REDUCE_DIM(6, 3);
      HANDLE_REDUCE_DIM(6, 2);
      HANDLE_REDUCE_DIM(6, 1);
      HANDLE_REDUCE_DIM(5, 4);
      HANDLE_REDUCE_DIM(5, 3);
      HANDLE_REDUCE_DIM(5, 2);
      HANDLE_REDUCE_DIM(5, 1);
      HANDLE_REDUCE_DIM(4, 3);
      HANDLE_REDUCE_DIM(4, 2);
      HANDLE_REDUCE_DIM(4, 1);
      HANDLE_REDUCE_DIM(3, 2);
      HANDLE_REDUCE_DIM(3, 1);
      HANDLE_REDUCE_DIM(2, 1);
      HANDLE_REDUCE_DIM(1, 1);
    }
  }
}

200 201 202 203 204 205 206 207 208
template <typename DeviceContext, typename T, typename Functor>
void Reduce(const DeviceContext& dev_ctx,
            const DenseTensor& x,
            bool reduce_all,
            const std::vector<int64_t>& dims,
            bool keep_dim,
            DataType out_dtype,
            DenseTensor* out) {
  // If the dims has full dim, set the reduce_all is True
209
  const int& input_dim_size = x.dims().size();
210 211
  std::set<int> dims_set(dims.begin(), dims.end());
  bool full_dim = true;
212 213 214
  for (int i = 0; i < input_dim_size; ++i) {
    if (dims_set.find(i) == dims_set.end() &&
        dims_set.find(i - input_dim_size) == dims_set.end()) {
215 216 217 218 219 220 221 222 223 224 225 226 227 228
      full_dim = false;
      break;
    }
  }
  reduce_all = (reduce_all || full_dim);

  // no need to cast dtype
  if (out_dtype == pten::DataType::UNDEFINED || out_dtype == x.dtype()) {
    if (out_dtype == pten::DataType::UNDEFINED) {
      out_dtype = x.dtype();
    }
    // do reduce sum
    PD_VISIT_ALL_TYPES(
        out_dtype, "ReduceKernelImpl", ([&] {
229
          pten::ReduceKernelImpl<DeviceContext, T, data_t, Functor>(
230 231 232 233
              dev_ctx, x, out, dims, keep_dim, reduce_all);
        }));
  } else {
    pten::DenseTensor tmp_tensor = pten::DenseTensor(
234 235
        pten::make_intrusive<paddle::experimental::SharedStorage>(x.place()),
        pten::DenseTensorMeta(out_dtype, x.dims(), x.layout()));
236

237
    // cast x tensor to out_dtype
238
    pten::CastKernel<T, DeviceContext>(dev_ctx, x, out_dtype, &tmp_tensor);
239 240 241 242

    // do reduce sum
    PD_VISIT_ALL_TYPES(
        out_dtype, "ReduceKernelImpl", ([&] {
243
          pten::ReduceKernelImpl<DeviceContext, T, data_t, Functor>(
244 245 246 247 248 249
              dev_ctx, tmp_tensor, out, dims, keep_dim, reduce_all);
        }));
  }
}

}  // namespace pten