BaseMatrix.cu 52.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cmath>
#include <string.h>
#include <paddle/utils/Logging.h>
#include "BaseMatrix.h"
#include "hl_matrix_ops.cuh"
#include "hl_matrix_base.cuh"
#include "hl_matrix_apply.cuh"
#include "SIMDFunctions.h"
#include "MathFunctions.h"

namespace paddle {

const char* SPARSE_SUPPORT_ERROR = "Sparse Matrix/Vector is not supported.";

template<class T>
template <class Op>
int BaseMatrixT<T>::applyUnary(Op op) {
  MatrixOffset offset(0, 0);
  applyUnary(op, height_, width_, offset);
  return 0;
}

template<class T>
template <class Op>
int BaseMatrixT<T>::applyUnary(Op op, int numRows, int numCols,
                               MatrixOffset& offset) {
  CHECK(!this->isSparse()) << SPARSE_SUPPORT_ERROR;
  int dimM = numRows;
  int dimN = numCols;
  int lda = stride_;

  T* A = data_;
  CAL_MATRIX_START_ADDRESS(A, height_, width_, lda, offset.aCol_, offset.aRow_);

  CHECK_LE(dimM + offset.aRow_, this->height_);
  CHECK_LE(dimN + offset.aCol_, this->width_);
  if (true == useGpu_) {
    hl_gpu_apply_unary_op(op, A, dimM, dimN, lda);
  } else {
    hl_cpu_apply_unary_op(op, A, dimM, dimN, lda);
  }
  return 0;
}

template<class T>
template <class Op>
int BaseMatrixT<T>::applyBinary(Op op, BaseMatrixT& b) {
  CHECK(height_ == b.height_ && width_ == b.width_)
      << "Matrix dimensions are not equal";

  MatrixOffset offset(0, 0, 0, 0);
  applyBinary(op, b, height_, width_, offset);
  return 0;
}

template<class T>
template <class Op>
int BaseMatrixT<T>::applyBinary(Op op, BaseMatrixT& b, int numRows, int numCols,
                                MatrixOffset& offset) {
  applyBinary(op, b, numRows, numCols, offset, false_type(), false_type());
  return 0;
}

template<class T>
template <class Op, class bAsRowVector, class bAsColVector>
int BaseMatrixT<T>::applyBinary(Op op, BaseMatrixT& b, int numRows, int numCols,
                            MatrixOffset& offset, bAsRowVector, bAsColVector) {
  CHECK(!this->isSparse()) << SPARSE_SUPPORT_ERROR;
  CHECK(!b.isSparse()) << SPARSE_SUPPORT_ERROR;
  CHECK(useGpu_ == b.useGpu_) << "Matrix type mismatch";

  int dimM = numRows;
  int dimN = numCols;
  int lda = stride_;
  int ldb = b.stride_;

  T* A = data_;
  T* B = b.data_;
  CAL_MATRIX_START_ADDRESS(A, height_, width_, lda, offset.aCol_, offset.aRow_);
  CAL_MATRIX_START_ADDRESS(B, b.height_, b.width_, ldb, offset.bCol_,
                           offset.bRow_);
  CHECK_LE(dimM + offset.aRow_, this->height_);
  CHECK_LE(dimN + offset.aCol_, this->width_);
  if (!bAsRowVector::value && !bAsColVector::value) {
    CHECK_LE(dimM + offset.bRow_, b.height_);
    CHECK_LE(dimN + offset.bCol_, b.width_);
  } else if (bAsRowVector::value && !bAsColVector::value) {
    CHECK_LE(dimN + offset.bCol_, b.width_);
  } else if (!bAsRowVector::value && bAsColVector::value) {
    CHECK_LE(dimM + offset.bRow_, b.height_);
  } else {
  }
  if (true == useGpu_) {
    hl_gpu_apply_binary_op<T, Op, bAsRowVector::value, bAsColVector::value>(
        op, A, B, dimM, dimN, lda, ldb);
  } else {
    hl_cpu_apply_binary_op<T, Op, bAsRowVector::value, bAsColVector::value>(
        op, A, B, dimM, dimN, lda, ldb);
  }

  return 0;
}

template<class T>
template <class Op>
int BaseMatrixT<T>::applyTernary(Op op, BaseMatrixT& b, BaseMatrixT& c) {
  CHECK_EQ(height_, b.height_);
  CHECK_EQ(width_, b.width_);
  CHECK_EQ(height_, c.height_);
  CHECK_EQ(width_, c.width_);

  MatrixOffset offset(0, 0, 0, 0, 0, 0);
  applyTernary(op, b, c, height_, width_, offset);

  return 0;
}

template<class T>
template <class Op>
int BaseMatrixT<T>::applyTernary(Op op, BaseMatrixT& b, BaseMatrixT& c,
                                 int numRows, int numCols,
                                 MatrixOffset& offset) {
  applyTernary(op, b, c, numRows, numCols, offset, false_type(), false_type());

  return 0;
}

template<class T>
template <class Op, class cAsRowVector, class cAsColVector>
int BaseMatrixT<T>::applyTernary(Op op, BaseMatrixT& b, BaseMatrixT& c,
                                 int numRows, int numCols, MatrixOffset& offset,
                                 cAsRowVector, cAsColVector) {
  CHECK(!this->isSparse()) << SPARSE_SUPPORT_ERROR;
  CHECK(!b.isSparse()) << SPARSE_SUPPORT_ERROR;
  CHECK(!c.isSparse()) << SPARSE_SUPPORT_ERROR;
  CHECK_EQ(useGpu_, b.useGpu_);
  CHECK_EQ(useGpu_, c.useGpu_);

  int dimM = numRows;
  int dimN = numCols;
  int lda = stride_;
  int ldb = b.stride_;
  int ldc = c.stride_;

  T* A = data_;
  T* B = b.data_;
  T* C = c.data_;
  CAL_MATRIX_START_ADDRESS(A, height_, width_, lda, offset.aCol_, offset.aRow_);
  CAL_MATRIX_START_ADDRESS(B, b.height_, b.width_, ldb, offset.bCol_,
                           offset.bRow_);
  CAL_MATRIX_START_ADDRESS(C, c.height_, c.width_, ldc, offset.cCol_,
                           offset.cRow_);

  CHECK_LE(dimM + offset.aRow_, this->height_);
  CHECK_LE(dimN + offset.aCol_, this->width_);
  CHECK_LE(dimM + offset.bRow_, b.height_);
  CHECK_LE(dimN + offset.bCol_, b.width_);
  if (!cAsRowVector::value && !cAsColVector::value) {
    CHECK_LE(dimM + offset.cRow_, c.height_);
    CHECK_LE(dimN + offset.cCol_, c.width_);
  } else if (cAsRowVector::value && !cAsColVector::value) {
    CHECK_LE(dimN + offset.cCol_, c.width_);
  } else if (!cAsRowVector::value && cAsColVector::value) {
    CHECK_LE(dimM + offset.cRow_, c.height_);
  } else {
  }

  if (true == useGpu_) {
    hl_gpu_apply_ternary_op
      <T, Op, cAsRowVector::value, cAsColVector::value>(
        op, A, B, C, dimM, dimN, lda, ldb, ldc);
  } else {
    hl_cpu_apply_ternary_op
      <T, Op, cAsRowVector::value, cAsColVector::value>(
        op, A, B, C, dimM, dimN, lda, ldb, ldc);
  }

  return 0;
}

template<class T>
template <class Op>
int BaseMatrixT<T>::applyQuaternary(Op op, BaseMatrixT& b, BaseMatrixT& c,
                                    BaseMatrixT& d) {
  CHECK_EQ(height_, b.height_);
  CHECK_EQ(width_, b.width_);
  CHECK_EQ(height_, c.height_);
  CHECK_EQ(width_, c.width_);
  CHECK_EQ(height_, d.height_);
  CHECK_EQ(width_, d.width_);

  MatrixOffset offset(0, 0, 0, 0, 0, 0, 0, 0);
  applyQuaternary(op, b, c, d, height_, width_, offset);

  return 0;
}

template<class T>
template <class Op>
int BaseMatrixT<T>::applyQuaternary(Op op, BaseMatrixT& b, BaseMatrixT& c,
                                    BaseMatrixT& d, int numRows, int numCols,
                                    MatrixOffset& offset) {
  CHECK(!this->isSparse()) << SPARSE_SUPPORT_ERROR;
  CHECK(!b.isSparse()) << SPARSE_SUPPORT_ERROR;
  CHECK(!c.isSparse()) << SPARSE_SUPPORT_ERROR;
  CHECK(!d.isSparse()) << SPARSE_SUPPORT_ERROR;
  CHECK_EQ(useGpu_, b.useGpu_);
  CHECK_EQ(useGpu_, c.useGpu_);
  CHECK_EQ(useGpu_, d.useGpu_);

  int dimM = numRows;
  int dimN = numCols;
  int lda = stride_;
  int ldb = b.stride_;
  int ldc = c.stride_;
  int ldd = d.stride_;

  T* A = data_;
  T* B = b.data_;
  T* C = c.data_;
  T* D = d.data_;
  CAL_MATRIX_START_ADDRESS(A, height_, width_, lda, offset.aCol_, offset.aRow_);
  CAL_MATRIX_START_ADDRESS(B, b.height_, b.width_, ldb, offset.bCol_,
                           offset.bRow_);
  CAL_MATRIX_START_ADDRESS(C, c.height_, c.width_, ldc, offset.cCol_,
                           offset.cRow_);
  CAL_MATRIX_START_ADDRESS(D, d.height_, d.width_, ldd, offset.dCol_,
                           offset.dRow_);

  CHECK_LE(dimM + offset.aRow_, this->height_);
  CHECK_LE(dimN + offset.aCol_, this->width_);
  CHECK_LE(dimM + offset.bRow_, b.height_);
  CHECK_LE(dimN + offset.bCol_, b.width_);
  CHECK_LE(dimM + offset.cRow_, c.height_);
  CHECK_LE(dimN + offset.cCol_, c.width_);
  CHECK_LE(dimM + offset.dRow_, d.height_);
  CHECK_LE(dimN + offset.dCol_, d.width_);
  if (true == useGpu_) {
    hl_gpu_apply_quaternary_op(op, A, B, C, D, dimM, dimN, lda, ldb,
                               ldc, ldd);
  } else {
    hl_cpu_apply_quaternary_op(op, A, B, C, D, dimM, dimN, lda, ldb,
                               ldc, ldd);
  }

  return 0;
}

template<class T>
template <class Agg, class Op, class Saver, class aAsRowVector,
          class aAsColVector>
int BaseMatrixT<T>::aggregate(Agg agg, Op op, Saver sv, BaseMatrixT& b,
                              int numRows, int numCols, MatrixOffset& offset,
                              aAsRowVector, aAsColVector) {
  CHECK_EQ(useGpu_, b.useGpu_);

  int ld = stride_;
  int ldb = b.stride_;

  T* dst = data_;
  T* B = b.data_;
  CAL_MATRIX_START_ADDRESS(dst, height_, width_, ld, offset.aCol_,
                           offset.aRow_);
  CAL_MATRIX_START_ADDRESS(B, b.height_, b.width_, ldb, offset.bCol_,
                           offset.bRow_);

  if (aAsRowVector::value && !aAsColVector::value) {
    if (useGpu_) {
      hl_gpu_matrix_column_op(agg, op, sv, numRows, numCols, dst, B, ldb);
    } else {
      hl_cpu_matrix_column_op(agg, op, sv, numRows, numCols, dst, B, ldb);
    }
  } else if (!aAsRowVector::value && aAsColVector::value) {
    if (useGpu_) {
      hl_gpu_matrix_row_op(agg, op, sv, numRows, numCols, dst, ld, B, ldb);
    } else {
      hl_cpu_matrix_row_op(agg, op, sv, numRows, numCols, dst, ld, B, ldb);
    }
  } else {
    LOG(FATAL) << "not supported";
  }

  return 0;
}

template<class T>
template <class Agg, class Op, class Saver, class aAsRowVector,
          class aAsColVector>
int BaseMatrixT<T>::aggregate(Agg agg, Op op, Saver sv, BaseMatrixT& b,
                              BaseMatrixT& c, int numRows, int numCols,
                              MatrixOffset& offset, aAsRowVector,
                              aAsColVector) {
  CHECK_EQ(useGpu_, b.useGpu_);
  CHECK_EQ(useGpu_, c.useGpu_);

  int ld = stride_;
  int ldb = b.stride_;
  int ldc = c.stride_;

  T* dst = data_;
  T* B = b.data_;
  T* C = c.data_;
  CAL_MATRIX_START_ADDRESS(dst, height_, width_, ld, offset.aCol_,
                           offset.aRow_);
  CAL_MATRIX_START_ADDRESS(B, b.height_, b.width_, ldb, offset.bCol_,
                           offset.bRow_);
  CAL_MATRIX_START_ADDRESS(C, c.height_, c.width_, ldc, offset.cCol_,
                           offset.cRow_);

  if (aAsRowVector::value && !aAsColVector::value) {
    if (useGpu_) {
      hl_gpu_matrix_column_op(agg, op, sv, numRows, numCols, dst, B,
                              ldb, C, ldc);
    } else {
      hl_cpu_matrix_column_op(agg, op, sv, numRows, numCols, dst, B,
                              ldb, C, ldc);
    }
  } else if (!aAsRowVector::value && aAsColVector::value) {
    if (useGpu_) {
      hl_gpu_matrix_row_op(agg, op, sv, numRows, numCols, dst, ld, B,
                           ldb, C, ldc);
    } else {
      hl_cpu_matrix_row_op(agg, op, sv, numRows, numCols, dst, ld, B,
                           ldb, C, ldc);
    }
  } else {
    LOG(FATAL) << "not supported";
  }

  return 0;
}

/**
 * @brief   unary operator.
 *
 */

DEFINE_MATRIX_UNARY_OP(Neg, a = -a);
template<class T>
void BaseMatrixT<T>::neg() { applyUnary(unary::Neg<T>()); }

DEFINE_MATRIX_UNARY_OP(Exp, a = exp(a));
template<>
H
hedaoyuan 已提交
358
void BaseMatrixT<real>::exp2() { applyUnary(unary::Exp<real>()); }
Z
zhangjinchao01 已提交
359 360 361

DEFINE_MATRIX_UNARY_OP(Log, a = log(a));
template<>
H
hedaoyuan 已提交
362
void BaseMatrixT<real>::log2() {
Z
zhangjinchao01 已提交
363 364 365 366 367 368 369 370 371
  if (useGpu_) {
    applyUnary(unary::Log<real>());
  } else {
    vLog(height_ * width_, data_, data_);
  }
}

DEFINE_MATRIX_UNARY_OP(Sqrt, a = sqrt(a));
template<>
H
hedaoyuan 已提交
372
void BaseMatrixT<real>::sqrt2() { applyUnary(unary::Sqrt<real>()); }
Z
zhangjinchao01 已提交
373 374 375

DEFINE_MATRIX_UNARY_OP(Square, a = a * a);
template<class T>
H
hedaoyuan 已提交
376
void BaseMatrixT<T>::square2() { applyUnary(unary::Square<T>()); }
Z
zhangjinchao01 已提交
377 378 379

DEFINE_MATRIX_UNARY_OP(Reciprocal, a = 1.0f / a);
template<class T>
H
hedaoyuan 已提交
380
void BaseMatrixT<T>::reciprocal2() { applyUnary(unary::Reciprocal<T>()); }
Z
zhangjinchao01 已提交
381 382 383

DEFINE_MATRIX_UNARY_OP(Abs, a = a > 0 ? a : -a);
template<class T>
H
hedaoyuan 已提交
384
void BaseMatrixT<T>::abs2() { applyUnary(unary::Abs<T>()); }
Z
zhangjinchao01 已提交
385 386 387

DEFINE_MATRIX_UNARY_OP(Sign, a = (a > 0) - (a < 0));
template<class T>
H
hedaoyuan 已提交
388
void BaseMatrixT<T>::sign2() { applyUnary(unary::Sign<T>()); }
Z
zhangjinchao01 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

DEFINE_MATRIX_UNARY_OP(Zero, a = 0);
template<class T>
void BaseMatrixT<T>::zero() { applyUnary(unary::Zero<T>()); }

template<class T>
void BaseMatrixT<T>::zeroAtOffset(int64_t columnOffset, int64_t numColumns) {
  int numRows = height_;
  int numCols = numColumns;
  MatrixOffset offset(columnOffset, 0);
  applyUnary(unary::Zero<T>(), numRows, numCols, offset);
}

DEFINE_MATRIX_UNARY_OP(One, a = 1);
template<class T>
void BaseMatrixT<T>::one() { applyUnary(unary::One<T>()); }

DEFINE_MATRIX_UNARY_PARAMETER_OP(Pow, ONE_PARAMETER, a = pow(a, p));
template<>
H
hedaoyuan 已提交
408
void BaseMatrixT<real>::pow2(real p) {
Z
zhangjinchao01 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
  if (useGpu_) {
    applyUnary(unary::Pow<real>(p));
  } else {
    vPow(height_ * width_, data_, p, data_);
  }
}

DEFINE_MATRIX_UNARY_PARAMETER_OP(SubScalar, ONE_PARAMETER, a -= p);
template<class T>
void BaseMatrixT<T>::subScalar(T p) { applyUnary(unary::SubScalar<T>(p)); }

DEFINE_MATRIX_UNARY_PARAMETER_OP(MulScalar, ONE_PARAMETER, a *= p);
template<class T>
void BaseMatrixT<T>::mulScalar(T p) { applyUnary(unary::MulScalar<T>(p)); }

DEFINE_MATRIX_UNARY_PARAMETER_OP(DivScalar, ONE_PARAMETER, a /= p);
template<class T>
void BaseMatrixT<T>::divScalar(T p) { applyUnary(unary::DivScalar<T>(p)); }

DEFINE_MATRIX_UNARY_PARAMETER_OP(Assign, ONE_PARAMETER, a = p);
template<class T>
void BaseMatrixT<T>::assign(T p) { applyUnary(unary::Assign<T>(p)); }

DEFINE_MATRIX_UNARY_PARAMETER_OP(Add, ONE_PARAMETER, a += p);
template<class T>
void BaseMatrixT<T>::add(T p) { applyUnary(unary::Add<T>(p)); }

DEFINE_MATRIX_UNARY_PARAMETER_OP(Add2, TWO_PARAMETER, a = a * p1 + p2);
template<class T>
void BaseMatrixT<T>::add(T p1, T p2) { applyUnary(unary::Add2<T>(p1, p2)); }

DEFINE_MATRIX_UNARY_PARAMETER_OP(Clip, TWO_PARAMETER,
                                 a = a < p1 ? p1 : (a > p2 ? p2 : a));
template<class T>
void BaseMatrixT<T>::clip(T p1, T p2) { applyUnary(unary::Clip<T>(p1, p2)); }

Y
Yu Yang 已提交
445 446
DEFINE_MATRIX_BINARY_PARAMETER_OP(ClipDerivative, TWO_PARAMETER,
		a = b < p1 ? 0 : (b > p2 ? 0 : 1));
G
guosheng 已提交
447 448 449 450 451
template<class T>
void BaseMatrixT<T>::clipDerivative(BaseMatrixT& b, T p1, T p2) {
  applyBinary(binary::ClipDerivative<T>(p1, p2), b);
}

Z
zhangjinchao01 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
DEFINE_MATRIX_UNARY_PARAMETER_OP(BiggerThanScalar, ONE_PARAMETER,
                                 a = a > p ? 1.0f : 0.0f);
template<class T>
void BaseMatrixT<T>::biggerThanScalar(T p) {
  applyUnary(unary::BiggerThanScalar<T>(p));
}

DEFINE_MATRIX_UNARY_PARAMETER_OP(DownClip, ONE_PARAMETER,
                                 a = a > p ? a : p);
template<class T>
void BaseMatrixT<T>::downClip(T p) {
  applyUnary(unary::DownClip<T>(p));
}

/**
 * @brief   binary operator.
 *
 */

DEFINE_MATRIX_BINARY_OP(Add, a += b);
template<class T>
void BaseMatrixT<T>::add(BaseMatrixT& b) {
  applyBinary(binary::Add<T>(), b);
}

template<>
void BaseMatrixT<real>::add(BaseMatrixT& b) {
  if (useGpu_) {
    applyBinary(binary::Add<real>(), b);
  } else {  // cpu branch
    CHECK_EQ(height_, b.height_);
    CHECK_EQ(width_, b.width_);
    vAdd(height_ * width_, data_, b.data_, data_);
  }
}

template<class T>
void BaseMatrixT<T>::addAtOffset(BaseMatrixT& b, int64_t columnOffset) {
  if (columnOffset + b.width_ <= width_) {
    int numRows = height_;
    int numCols = b.width_;
    MatrixOffset offset(columnOffset, 0, 0, 0);
    applyBinary(binary::Add<T>(), b, numRows, numCols, offset);
  } else if (columnOffset + width_ <= b.width_) {
    int numRows = height_;
    int numCols = width_;
    MatrixOffset offset(0, 0, columnOffset, 0);
    applyBinary(binary::Add<T>(), b, numRows, numCols, offset);
  } else {
    LOG(FATAL) << "Wrong argument "
               << " a.width=" << width_ << " b.width=" << b.width_
               << " columnOffset=" << columnOffset;
  }
}

template<class T>
void BaseMatrixT<T>::addP2P(BaseMatrixT& b) {
  T* A = data_;
  T* B = b.data_;
  int dimM = height_;
  int dimN = width_;

  hl_gpu_apply_binary_op<T, binary::Add<T>, 0, 0>
    (binary::Add<T>(), A, B, dimM, dimN, dimN, dimN);
}

template<class T>
void BaseMatrixT<T>::addColVector(BaseMatrixT& b) {
  MatrixOffset offset(0, 0, 0, 0);
  int numRows = height_;
  int numCols = width_;
  applyBinary(binary::Add<T>(), b, numRows, numCols, offset, false_type(),
              true_type() /* bAsColVector */);
}

template<class T>
void BaseMatrixT<T>::addRowVector(BaseMatrixT& b) {
  MatrixOffset offset(0, 0, 0, 0);
  int numRows = height_;
  int numCols = width_;
  applyBinary(binary::Add<T>(), b, numRows, numCols, offset,
              true_type() /* bAsRowVector */, false_type());
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(Add1, ONE_PARAMETER, a += b * p);
template<class T>
void BaseMatrixT<T>::add(BaseMatrixT& b, T p) {
  applyBinary(binary::Add1<T>(p), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(Pow, ONE_PARAMETER, a = pow(b, p));
template<>
H
hedaoyuan 已提交
544
void BaseMatrixT<real>::pow2(BaseMatrixT& b, real p) {
Z
zhangjinchao01 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
  if (useGpu_) {
    applyBinary(binary::Pow<real>(p), b);
  } else {
    vPow(height_ * width_, b.data_, p, data_);
  }
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(Add2, TWO_PARAMETER, a = p1 * a + p2 * b);
template<class T>
void BaseMatrixT<T>::add(BaseMatrixT& b, T p1, T p2) {
  applyBinary(binary::Add2<T>(p1, p2), b);
}

template<class T>
void BaseMatrixT<T>::addBias(BaseMatrixT& b, T scale) {
  MatrixOffset offset(0, 0, 0, 0);
  int numRows = height_;
  int numCols = width_;
  applyBinary(binary::Add1<T>(scale), b, numRows, numCols, offset,
              true_type() /* bAsRowVector */, false_type());
}

DEFINE_MATRIX_BINARY_OP(Sub, a -= b);
template<class T>
void BaseMatrixT<T>::sub(BaseMatrixT& b) { applyBinary(binary::Sub<T>(), b); }

DEFINE_MATRIX_BINARY_PARAMETER_OP(Sub1, ONE_PARAMETER, a -= b * p);
template<class T>
void BaseMatrixT<T>::sub(BaseMatrixT& b, T p) {
  applyBinary(binary::Sub1<T>(p), b);
}

DEFINE_MATRIX_BINARY_OP(Relu, b = a > 0.0f ? a : 0.0f);
template<class T>
void BaseMatrixT<T>::relu(BaseMatrixT& b) { applyBinary(binary::Relu<T>(), b); }

DEFINE_MATRIX_BINARY_OP(ReluDerivative, a *= (b > 0.0f ? 1.0f : 0.0f));
template<class T>
void BaseMatrixT<T>::reluDerivative(BaseMatrixT& b) {
  applyBinary(binary::ReluDerivative<T>(), b);
}

DEFINE_MATRIX_BINARY_OP(Softrelu, const T THRESHOLD = 40.0;
                        b = log(1.0 + exp((a > THRESHOLD)
                                              ? THRESHOLD
                                              : ((a < -THRESHOLD) ? (-THRESHOLD)
                                                                  : a))));
template<>
void BaseMatrixT<real>::softrelu(BaseMatrixT& b) {
  applyBinary(binary::Softrelu<real>(), b);
}

DEFINE_MATRIX_BINARY_OP(
    SoftreluDerivative, const T THRESHOLD = 40.0;
    a *= (1.0 - exp(-1.0 * ((b > THRESHOLD)
                                ? THRESHOLD
                                : ((b < -THRESHOLD) ? (-THRESHOLD) : b)))));
template<>
void BaseMatrixT<real>::softreluDerivative(BaseMatrixT& b) {
  applyBinary(binary::SoftreluDerivative<real>(), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(Brelu, TWO_PARAMETER, b = a > p1 ? a : p1;
                                  b = b < p2 ? b : p2);
template<class T>
void BaseMatrixT<T>::brelu(BaseMatrixT& b) {
  int p1 = 0, p2 = 24;    //! TODO(yuyang18): Make p1,p2 configuable.
  applyBinary(binary::Brelu<T>(p1, p2), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(BreluDerivative, TWO_PARAMETER,
                                  a *= (b > p1 && b < p2) ? 1.0 : 0.0);
template<class T>
void BaseMatrixT<T>::breluDerivative(BaseMatrixT& b) {
  int p1 = 0, p2 = 24;
  applyBinary(binary::BreluDerivative<T>(p1, p2), b);
}

DEFINE_MATRIX_BINARY_OP(Square, b = a * a);
template<class T>
H
hedaoyuan 已提交
625
void BaseMatrixT<T>::square2(BaseMatrixT& b) {
Z
zhangjinchao01 已提交
626 627 628 629 630 631 632 633 634
  applyBinary(binary::Square<T>(), b);
}

DEFINE_MATRIX_BINARY_OP(SquareDerivative, a *= 2.0 * b);
template<class T>
void BaseMatrixT<T>::squareDerivative(BaseMatrixT& b) {
  applyBinary(binary::SquareDerivative<T>(), b);
}

635 636 637 638
DEFINE_MATRIX_BINARY_OP(Tanh,
    T tmp = -2.0 * a;
    tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp;
    b = 2.0 / (1.0 + std::exp(tmp)) - 1.0);
Z
zhangjinchao01 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
template<>
void BaseMatrixT<real>::tanh(BaseMatrixT& b) {
  applyBinary(binary::Tanh<real>(), b);
}

DEFINE_MATRIX_BINARY_OP(TanhDerivative, a *= 1 - b * b);
template<class T>
void BaseMatrixT<T>::tanhDerivative(BaseMatrixT& b) {
  applyBinary(binary::TanhDerivative<T>(), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(ScaledTanh, TWO_PARAMETER,
                                  b = p1 *
                                      (2.0 / (1.0 + exp(-2 * p2 * a)) - 1.0));
template<>
void BaseMatrixT<real>::scaledTanh(BaseMatrixT& b, real p1, real p2) {
  applyBinary(binary::ScaledTanh<real>(p1, p2), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(ScaledTanhDerivative, TWO_PARAMETER,
                                  a *= p2 * (p1 - b * b));
template<class T>
void BaseMatrixT<T>::scaledTanhDerivative(BaseMatrixT& b, T p1, T p2) {
  applyBinary(binary::ScaledTanhDerivative<T>(p1 * p1, p2 / p1), b);
}

DEFINE_MATRIX_BINARY_OP(Reciprocal, b = 1.0f / a);
template<class T>
H
hedaoyuan 已提交
667
void BaseMatrixT<T>::reciprocal2(BaseMatrixT& b) {
Z
zhangjinchao01 已提交
668 669 670 671 672 673 674 675 676 677 678
  applyBinary(binary::Reciprocal<T>(), b);
}

DEFINE_MATRIX_BINARY_OP(ReciprocalDerivative, a *= -b * b);
template<class T>
void BaseMatrixT<T>::reciprocalDerivative(BaseMatrixT& b) {
  applyBinary(binary::ReciprocalDerivative<T>(), b);
}

DEFINE_MATRIX_BINARY_OP(Abs, b = a > 0.0f ? a : -a);
template<class T>
H
hedaoyuan 已提交
679
void BaseMatrixT<T>::abs2(BaseMatrixT& b) { applyBinary(binary::Abs<T>(), b); }
Z
zhangjinchao01 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

DEFINE_MATRIX_BINARY_OP(AbsDerivative, a = (b > 0) ? a : (b < 0) ? -a : 0);
template<class T>
void BaseMatrixT<T>::absDerivative(BaseMatrixT& b) {
  applyBinary(binary::AbsDerivative<T>(), b);
}

DEFINE_MATRIX_BINARY_OP(
    Sigmoid, const T THRESHOLD_MIN = -40.0; const T THRESHOLD_MAX = 13.0;
    T tmp = (a < THRESHOLD_MIN) ? THRESHOLD_MIN
                                   : ((a > THRESHOLD_MAX) ? THRESHOLD_MAX : a);
    b = 1.0f / (1.0f + exp(-tmp)));
template<>
void BaseMatrixT<real>::sigmoid(BaseMatrixT& b) {
  if (useGpu_) {
    applyBinary(binary::Sigmoid<real>(), b);
  } else {  // cpu versioni
    size_t numSamples = this->height_;
    size_t dim = this->width_;
    CHECK_EQ(b.height_, numSamples);
    CHECK_EQ(b.width_, dim);
    const real* in = this->data_;
    real* out = b.data_;

    // out = - in
    const float THRESHOLD_MIN = -40.0;  // make sure sigmoid(x) > 0
    const float THRESHOLD_MAX = 13.0;   // make sure sigmoid(x) < 1
    for (size_t i = 0; i < numSamples * dim; ++i) {
      real tmp = in[i];
      tmp = (tmp < THRESHOLD_MIN)
                ? THRESHOLD_MIN
                : ((tmp > THRESHOLD_MAX) ? THRESHOLD_MAX : tmp);
      out[i] = -tmp;
    }

    // out = exp(out)
    vExp(numSamples * dim, out, out);

    // out = 1 / (1 + out)
    for (size_t i = 0; i < numSamples * dim; ++i) {
      out[i] = 1 / (1 + out[i]);
    }
  }
}

DEFINE_MATRIX_BINARY_OP(SigmoidDerivative, a *= b * (1 - b));
template<class T>
void BaseMatrixT<T>::sigmoidDerivative(BaseMatrixT& b) {
  applyBinary(binary::SigmoidDerivative<T>(), b);
}

DEFINE_MATRIX_BINARY_OP(ExpDerivative, a *= b);
template<class T>
void BaseMatrixT<T>::expDerivative(BaseMatrixT& b) {
  applyBinary(binary::ExpDerivative<T>(), b);
}

DEFINE_MATRIX_BINARY_OP(Sign, b = a > 0.0f ? 1.0f : -1.0f);
template<class T>
H
hedaoyuan 已提交
739 740 741
void BaseMatrixT<T>::sign2(BaseMatrixT& b) {
  applyBinary(binary::Sign<T>(), b);
}
Z
zhangjinchao01 已提交
742 743 744

DEFINE_MATRIX_BINARY_OP(Exp, a = exp(b));
template<>
H
hedaoyuan 已提交
745
void BaseMatrixT<real>::exp2(BaseMatrixT& b) {
Z
zhangjinchao01 已提交
746 747 748 749 750
  applyBinary(binary::Exp<real>(), b);
}

DEFINE_MATRIX_BINARY_OP(Log, a = log(b));
template<>
H
hedaoyuan 已提交
751
void BaseMatrixT<real>::log2(BaseMatrixT& b) {
Z
zhangjinchao01 已提交
752 753 754 755 756 757 758 759 760
  if (useGpu_) {
    applyBinary(binary::Log<real>(), b);
  } else {
    vLog(height_ * width_, b.data_, data_);
  }
}

DEFINE_MATRIX_BINARY_OP(Sqrt, a = sqrt(b));
template<>
H
hedaoyuan 已提交
761
void BaseMatrixT<real>::sqrt2(BaseMatrixT& b) {
Z
zhangjinchao01 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
  applyBinary(binary::Sqrt<real>(), b);
}

DEFINE_MATRIX_BINARY_OP(InvSqrt, a = 1.0f / sqrt(b));
template<>
void BaseMatrixT<real>::invSqrt(BaseMatrixT& b) {
  if (useGpu_) {
    applyBinary(binary::InvSqrt<real>(), b);
  } else {  // cpu branch
    CHECK_EQ(height_, b.height_);
    CHECK_EQ(width_, b.width_);
    vInvSqrt(height_ * width_, b.data_, data_);
  }
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(IsEqual, ONE_PARAMETER, a = (b == p));
template<class T>
void BaseMatrixT<T>::isEqualTo(BaseMatrixT& b, T value) {
  applyBinary(binary::IsEqual<T>(value), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(AddScalar, ONE_PARAMETER, a = b + p);
template<class T>
void BaseMatrixT<T>::addScalar(BaseMatrixT& b, T p) {
  applyBinary(binary::AddScalar<T>(p), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(SubScalar, ONE_PARAMETER, a = b - p);
template<class T>
void BaseMatrixT<T>::subScalar(BaseMatrixT& b, T p) {
  applyBinary(binary::SubScalar<T>(p), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(MulScalar, ONE_PARAMETER, a = b * p);
template<class T>
void BaseMatrixT<T>::mulScalar(BaseMatrixT& b, T p) {
  applyBinary(binary::MulScalar<T>(p), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(DivScalar, ONE_PARAMETER, a = b / p);
template<class T>
void BaseMatrixT<T>::divScalar(BaseMatrixT& b, T p) {
  applyBinary(binary::DivScalar<T>(p), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(ScalarDiv, ONE_PARAMETER, a = p / b);
template<class T>
void BaseMatrixT<T>::scalarDiv(BaseMatrixT& b, T p) {
  applyBinary(binary::ScalarDiv<T>(p), b);
}

/**
 * @brief   ternary operator.
 *
 */

DEFINE_MATRIX_TERNARY_OP(SoftCrossEntropy,
                         a = -c * log(b) - (1 - c) * log(1 - b));
template<>
void BaseMatrixT<real>::softCrossEntropy(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::SoftCrossEntropy<real>(), b, c);
}

DEFINE_MATRIX_TERNARY_OP(SoftCrossEntropyBp, a += (b - c) / (b * (1 - b)));
template<class T>
void BaseMatrixT<T>::softCrossEntropyBp(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::SoftCrossEntropyBp<T>(), b, c);
}

DEFINE_MATRIX_TERNARY_OP(BinaryCrossEntropy,
                         a = c > 0.5 ? -log(b) : -log(1.0 - b));
template<>
void BaseMatrixT<real>::binaryLabelCrossEntropy(BaseMatrixT& b,
                                                BaseMatrixT& c) {
  if (useGpu_) {
    applyTernary(ternary::BinaryCrossEntropy<real>(), b, c);
  } else {
    CHECK_EQ(height_, b.height_);
    CHECK_EQ(height_, c.height_);
    CHECK_EQ(width_, b.width_);
    CHECK_EQ(width_, c.width_);

    size_t size = height_ * width_;
    real* out = b.data_;
    real* label = c.data_;
    real* cost = data_;

    for (size_t i = 0; i < size; ++i) {
      cost[i] = label[i] > 0.5 ? out[i] : 1.0 - out[i];
    }
    vLog(size, cost, cost);
    for (size_t i = 0; i < size; ++i) {
      cost[i] *= -1.0;
    }
  }
}

DEFINE_MATRIX_TERNARY_OP(BinaryCrossEntropyBp,
                         a += c > 0.5 ? -1.0 / b : 1.0 / (1.0 - b));
template<class T>
void BaseMatrixT<T>::binaryLabelCrossEntropyBp(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::BinaryCrossEntropyBp<T>(), b, c);
}

DEFINE_MATRIX_TERNARY_OP(Add, a = b + c);
template<class T>
void BaseMatrixT<T>::add(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::Add<T>(), b, c);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(Add1, TWO_PARAMETER, a = p1 * b + p2 * c);
template<class T>
void BaseMatrixT<T>::add(BaseMatrixT& b, T p1, BaseMatrixT& c, T p2) {
  applyTernary(ternary::Add1<T>(p1, p2), b, c);
}

DEFINE_MATRIX_TERNARY_OP(Sub, a = b - c);
template<class T>
void BaseMatrixT<T>::sub(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::Sub<T>(), b, c);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(Sub1, TWO_PARAMETER, a = p1 * b - p2 * c);
template<class T>
void BaseMatrixT<T>::sub(BaseMatrixT& b, T p1, BaseMatrixT& c, T p2) {
  applyTernary(ternary::Sub1<T>(p1, p2), b, c);
}

DEFINE_MATRIX_TERNARY_OP(Add2, a = a + b + c);
template<class T>
void BaseMatrixT<T>::add2(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::Add2<T>(), b, c);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(Add3, THREE_PARAMETER,
                                   a = p1 * a + p2 * b + p3 * c);
template<class T>
void BaseMatrixT<T>::add2(BaseMatrixT& b, BaseMatrixT& c, T p1, T p2, T p3) {
  applyTernary(ternary::Add3<T>(p1, p2, p3), b, c);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(SgdUpdate, THREE_PARAMETER,
                                   c = p2 * c - p1 * (b + p3 * a);
                                   a = a + c);
template<class T>
void BaseMatrixT<T>::sgdUpdate(BaseMatrixT& b,  // grad
                               BaseMatrixT& c,  // mom
                               T p1,        // learningRate,
                               T p2,        // momentum,
                               T p3) {      // decayRate
  applyTernary(ternary::SgdUpdate<T>(p1, p2, p3), b, c);
}

DEFINE_MATRIX_QUATERNARY_PARAMETER_OP(SgdUpdate, THREE_PARAMETER,
                                      c = p2 * c - p1 * d * (b + p3 * a);
                                      a += c);
template<class T>
void BaseMatrixT<T>::sgdUpdate(BaseMatrixT& b,  // grad,
                               BaseMatrixT& c,  // mom,
                               BaseMatrixT& d,  // lr,
                               T p1,        // learningRate,
                               T p2,        // momentum,
                               T p3) {      // decayRate
  applyQuaternary(quaternary::SgdUpdate<T>(p1, p2, p3), b, c, d);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(ApplyL1, ONE_PARAMETER, T lambda = p * b;
                                  a = (a > lambda)
                                          ? (a - lambda)
                                          : (a < -lambda) ? (a + lambda) : 0);
template<class T>
void BaseMatrixT<T>::applyL1(BaseMatrixT& lr, T learningRate, T decayRate) {
  applyBinary(binary::ApplyL1<T>(learningRate * decayRate), lr);
}

template<>
void BaseMatrixT<real>::applyL1(BaseMatrixT& lr,
                                real learningRate,
                                real decayRate) {
  if (useGpu_) {
    applyBinary(binary::ApplyL1<real>(learningRate * decayRate), lr);
  } else {
    simd::decayL1(this->data_, this->data_, lr.data_, learningRate * decayRate,
                  height_ * width_);
  }
}

DEFINE_MATRIX_UNARY_PARAMETER_OP(ApplyL1, ONE_PARAMETER, T lambda = p;
                                 a = (a > lambda)
                                         ? (a - lambda)
                                         : (a < -lambda) ? (a + lambda) : 0);
template<class T>
void BaseMatrixT<T>::applyL1(T learningRate, T decayRate) {
  applyUnary(unary::ApplyL1<T>(learningRate * decayRate));
}

template<>
void BaseMatrixT<real>::applyL1(real learningRate, real decayRate) {
  if (useGpu_) {
    applyUnary(unary::ApplyL1<real>(learningRate * decayRate));
  } else {
    simd::decayL1(this->data_, this->data_, learningRate * decayRate,
                  height_ * width_);
  }
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(ApplyL2, ONE_PARAMETER,
                                  a *= (1.0f / (1.0f + p * b)));
template<class T>
void BaseMatrixT<T>::applyL2(BaseMatrixT& lr, T learningRate, T decayRate) {
  if (useGpu_) {
    applyBinary(binary::ApplyL2<T>(learningRate * decayRate), lr);
  } else {
    size_t size = this->height_ * this->width_;
    T decay = learningRate * decayRate;
    for (size_t j = 0; j < size; ++j) {
      this->data_[j] *= 1.0f / (1.0f + decay * lr.data_[j]);
    }
  }
}

template<class T>
void BaseMatrixT<T>::applyL2(T learningRate, T decayRate) {
  BaseMatrixT<T>::mulScalar(1.0f / (1.0f + learningRate * decayRate));
}

DEFINE_MATRIX_BINARY_OP(DotMul, a *= b);
template<class T>
void BaseMatrixT<T>::dotMul(BaseMatrixT& b) {
  applyBinary(binary::DotMul<T>(), b);
}

DEFINE_MATRIX_TERNARY_OP(DotMul, a = b * c);
template<class T>
void BaseMatrixT<T>::dotMul(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::DotMul<T>(), b, c);
}

DEFINE_MATRIX_TERNARY_OP(DotDiv, a = (b == 0.0) ? 0.0 : b / c);
template<class T>
void BaseMatrixT<T>::dotDiv(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::DotDiv<T>(), b, c);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(DotDiv2P, TWO_PARAMETER,
                                   a = (b + p1) / (c + p2));
template<class T>
void BaseMatrixT<T>::dotDiv(BaseMatrixT& b, BaseMatrixT& c, T p1, T p2) {
  applyTernary(ternary::DotDiv2P<T>(p1, p2), b, c);
}

DEFINE_MATRIX_QUATERNARY_OP(RankLoss, const T THRESHOLD = 40.0; a = b - c;
                            a = (a > THRESHOLD)
                                    ? THRESHOLD
                                    : ((a < -THRESHOLD) ? (-THRESHOLD) : a);
                            a = log(1 + exp(a)) - a * d);
template<>
void BaseMatrixT<real>::rankLoss(BaseMatrixT& b,
                                 BaseMatrixT& c,
                                 BaseMatrixT& d) {
  applyQuaternary(quaternary::RankLoss<real>(), b, c, d);
}

DEFINE_MATRIX_QUATERNARY_OP(RankLossBp, const T THRESHOLD = 40.0; a = b - c;
                            a = (a > THRESHOLD)
                                    ? THRESHOLD
                                    : ((a < -THRESHOLD) ? (-THRESHOLD) : a);
                            a = exp(a); a = (a / (1 + a) - d));
template<>
void BaseMatrixT<real>::rankLossBp(BaseMatrixT& b,
                                   BaseMatrixT& c,
                                   BaseMatrixT& d) {
  applyQuaternary(quaternary::RankLossBp<real>(), b, c, d);
}

/* this = log(1 + exp(b)) - c * b */
DEFINE_MATRIX_TERNARY_OP(LogisticRegressionLoss, const T THRESHOLD = 40.0;
                         T x = (b > THRESHOLD) ? THRESHOLD : (b < -THRESHOLD)
                                                                 ? -THRESHOLD
                                                                 : b;
                         a = log(1 + exp(x)) - c * x);
template<>
void BaseMatrixT<real>::logisticRegressionLoss(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::LogisticRegressionLoss<real>(), b, c);
}

/* this = exp(b)/(1+exp(b)) - c */
DEFINE_MATRIX_TERNARY_OP(LogisticRegressionLossBp, const T THRESHOLD = 40.0;
                         T x = (b > THRESHOLD) ? THRESHOLD : (b < -THRESHOLD)
                                                                 ? -THRESHOLD
                                                                 : b;
                         x = exp(x); a = x / (1 + x) - c);
template<>
void BaseMatrixT<real>::logisticRegressionLossBp(BaseMatrixT& b,
                                                 BaseMatrixT& c) {
  applyTernary(ternary::LogisticRegressionLossBp<real>(), b, c);
}

DEFINE_MATRIX_TERNARY_OP(BiggerThan, a = (b > c) ? 1.0f : 0.0f);
template<class T>
void BaseMatrixT<T>::biggerThan(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::BiggerThan<T>(), b, c);
}

DEFINE_MATRIX_QUATERNARY_OP(
    BiggerThan, a = ((b > c && d > 0.5f) || (b < c && d < 0.5f)) ? 1.0f : 0.0f);
template<class T>
void BaseMatrixT<T>::biggerThan(BaseMatrixT& b,
                                BaseMatrixT& c,
                                BaseMatrixT& d) {
  applyQuaternary(quaternary::BiggerThan<T>(), b, c, d);
}

DEFINE_MATRIX_TERNARY_OP(Max, a = (b > c) ? b : c);
template<class T>
H
hedaoyuan 已提交
1077
void BaseMatrixT<T>::max2(BaseMatrixT& b, BaseMatrixT& c) {
Z
zhangjinchao01 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
  applyTernary(ternary::Max<T>(), b, c);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(BinaryClassificationError, ONE_PARAMETER,
                                   c += ((a > p) == (b > p)) ? 0.0f : 1.0f);
template<class T>
void BaseMatrixT<T>::binaryClassificationError2(size_t destCol, BaseMatrixT& b,
                                                BaseMatrixT& c, T p) {
  CHECK(!useGpu_) << "do not support gpu";
  MatrixOffset offset(0, 0, 0, 0, destCol, 0);
  int numRows = b.height_;
  int numCols = b.width_;
  b.applyTernary(ternary::BinaryClassificationError<T>(p), c, *this, numRows,
                 numCols, offset, false_type(), true_type() /*cAsColVector*/);
}

template<>
void BaseMatrixT<real>::binaryClassificationError(size_t destCol,
                                                  BaseMatrixT& b,
                                                  BaseMatrixT& c,
                                                  real p) {
  MatrixOffset offset(destCol, 0, 0, 0, 0, 0);
  int numRows = b.height_;
  int numCols = b.width_;
  aggregate(aggregate::sum(), base::binary::classificationError(p),
            base::binary::add(), b, c, numRows, numCols, offset, false_type(),
            true_type() /*aAsColVector*/);
}

DEFINE_MATRIX_QUATERNARY_PARAMETER_OP(Add3, THREE_PARAMETER,
                                      a = p1 * b + p2 * c + p3 * d);
template<class T>
void BaseMatrixT<T>::add3(BaseMatrixT& b, BaseMatrixT& c, BaseMatrixT& d, T p1,
                          T p2, T p3) {
  applyQuaternary(quaternary::Add3<T>(p1, p2, p3), b, c, d);
}

DEFINE_MATRIX_TERNARY_OP(DotMulSquare, a = b * c * c);
template<class T>
void BaseMatrixT<T>::dotMulSquare(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::DotMulSquare<T>(), b, c);
}

DEFINE_MATRIX_TERNARY_OP(DotSquareSquare, a = b * b * c * c);
template<class T>
void BaseMatrixT<T>::dotSquareSquare(BaseMatrixT& b, BaseMatrixT& c) {
  applyTernary(ternary::DotSquareSquare<T>(), b, c);
}

DEFINE_MATRIX_BINARY_OP(DotMulSquare, a *= b * b);
template<class T>
void BaseMatrixT<T>::dotMulSquare(BaseMatrixT& b) {
  applyBinary(binary::DotMulSquare<T>(), b);
}

DEFINE_MATRIX_BINARY_OP(DotSquareMul, a = a * a * b);
template<class T>
void BaseMatrixT<T>::dotSquareMul(BaseMatrixT& b) {
  applyBinary(binary::DotSquareMul<T>(), b);
}

DEFINE_MATRIX_QUATERNARY_PARAMETER_OP(AddSquareSum, THREE_PARAMETER,
                                      T tmp = p1 * b + p2 * c + p3 * d;
                                      a += tmp * tmp);
template<class T>
void BaseMatrixT<T>::addSquareSum(BaseMatrixT& b, BaseMatrixT& c, BaseMatrixT d,
                                  T p1, T p2, T p3) {
  applyQuaternary(quaternary::AddSquareSum<T>(p1, p2, p3), b, c, d);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(AddSquare, ONE_PARAMETER, a += p * b * b);
template<class T>
void BaseMatrixT<T>::addSquare(BaseMatrixT& b, T p) {
  applyBinary(binary::AddSquare<T>(p), b);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(DecayAddSquare, TWO_PARAMETER,
                                  a = p1 * a + p2 * b * b);
template<class T>
void BaseMatrixT<T>::decayAddSquare(BaseMatrixT& b, T p1, T p2) {
  applyBinary(binary::DecayAddSquare<T>(p1, p2), b);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(DecayAddSquareMul, TWO_PARAMETER,
                                   a = p1 * a + p2 * b * b * c * c);
template<class T>
void BaseMatrixT<T>::decayAddSquareMul(BaseMatrixT& b, BaseMatrixT& c, T p1,
                                       T p2) {
  applyTernary(ternary::DecayAddSquareMul<T>(p1, p2), b, c);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(ReciprocalSum, THREE_PARAMETER,
                                   a = 1 / (p1 * b + p2 * c + p3));
template<class T>
void BaseMatrixT<T>::reciprocalSum(BaseMatrixT& b, BaseMatrixT& c, T p1, T p2,
                                   T p3) {
  applyTernary(ternary::ReciprocalSum<T>(p1, p2, p3), b, c);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(Reciprocal2, TWO_PARAMETER,
                                  a = 1 / (p1 * b + p2));
template<class T>
H
hedaoyuan 已提交
1180
void BaseMatrixT<T>::reciprocal2(BaseMatrixT& b, T p1, T p2) {
Z
zhangjinchao01 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
  applyBinary(binary::Reciprocal2<T>(p1, p2), b);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(DotMulSquareSum, TWO_PARAMETER,
                                   T tmp = p1 * b + p2 * c;
                                   a *= tmp * tmp);
template<class T>
void BaseMatrixT<T>::dotMulSquareSum(BaseMatrixT& b, BaseMatrixT& c, T p1,
                                     T p2) {
  applyTernary(ternary::DotMulSquareSum<T>(p1, p2), b, c);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(DotSquareSum, TWO_PARAMETER,
                                   T tmp = p1 * b + p2 * c;
                                   a = tmp * tmp);
template<class T>
void BaseMatrixT<T>::dotSquareSum(BaseMatrixT& b, BaseMatrixT& c, T p1, T p2) {
  applyTernary(ternary::DotSquareSum<T>(p1, p2), b, c);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(DotMulSum, TWO_PARAMETER,
                                   a *= p1 * b + p2 * c);
template<class T>
void BaseMatrixT<T>::dotMulSum(BaseMatrixT& b, BaseMatrixT& c, T p1, T p2) {
  applyTernary(ternary::DotMulSum<T>(p1, p2), b, c);
}

DEFINE_MATRIX_BINARY_OP(CopyAndClear, b = a; a = 0);
template<class T>
void BaseMatrixT<T>::copyAndClear(BaseMatrixT& b) {
  applyBinary(binary::CopyAndClear<T>(), b);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(AddDotMul, TWO_PARAMETER,
                                   a = p1 * a + p2 * b * c);
template<class T>
void BaseMatrixT<T>::addDotMul(BaseMatrixT& b, BaseMatrixT& c, T p1, T p2) {
  applyTernary(ternary::AddDotMul<T>(p1, p2), b, c);
}

DEFINE_MATRIX_BINARY_OP(Assign, a = b;);
template<class T>
void BaseMatrixT<T>::assign(BaseMatrixT& b) {
  if (useGpu_) {
    applyBinary(binary::Assign<T>(), b);
  } else {  // cpu version
    CHECK_EQ(this->height_, b.height_);
    CHECK_EQ(this->width_, b.width_);
    memcpy(data_, b.data_, sizeof(T) * height_ * width_);
  }
}

template<class T>
void BaseMatrixT<T>::assignAtOffset(BaseMatrixT& b, int64_t columnOffset) {
  if (columnOffset + b.width_ <= width_) {
    int numRows = height_;
    int numCols = b.width_;
    MatrixOffset offset(columnOffset, 0, 0, 0);
    applyBinary(binary::Assign<T>(), b, numRows, numCols, offset);
  } else if (columnOffset + width_ <= b.width_) {
    int numRows = height_;
    int numCols = width_;
    MatrixOffset offset(0, 0, columnOffset, 0);
    applyBinary(binary::Assign<T>(), b, numRows, numCols, offset);
  } else {
    LOG(FATAL) << "Wrong argument "
               << " a.width=" << width_ << " b.width=" << b.width_
               << " columnOffset=" << columnOffset;
  }
}

X
xutianbing 已提交
1252 1253 1254 1255 1256 1257
DEFINE_MATRIX_BINARY_OP(DeepSwap, T tmp = a; a = b; b = tmp);
template<class T>
void BaseMatrixT<T>::deepSwap(BaseMatrixT& b) {
    applyBinary(binary::DeepSwap<T>(), b);
}

Z
zhangjinchao01 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
template<>
void BaseMatrixT<real>::rowDotMul(size_t destCol,
                                  BaseMatrixT& b,
                                  BaseMatrixT& c) {
  int numRows = b.height_;
  int numCols = b.width_;
  MatrixOffset offset(destCol, 0, 0, 0, 0, 0);
  aggregate(aggregate::sum(), base::binary::mul(), base::binary::add(), b, c,
            numRows, numCols, offset, false_type(),
            true_type() /*aAsColVector*/);
}

template<class T>
void BaseMatrixT<T>::rowDotMul2(size_t destCol,
                                BaseMatrixT& b,
                                BaseMatrixT& c) {
  CHECK(!useGpu_) << "do not support gpu";

  size_t height = this->height_;
  CHECK_LT(destCol, this->width_);
  CHECK_EQ(height, b.height_);
  CHECK_EQ(height, c.height_);
  CHECK_EQ(b.width_, c.width_);
  size_t width = b.width_;
  T* A = this->data_;
  const T* B = b.data_;
  const T* C = c.data_;
  for (size_t i = 0; i < height;
       ++i, A += this->width_, B += width, C += width) {
    for (size_t j = 0; j < width; ++j) {
      A[destCol] += B[j] * C[j];
    }
  }
}

template<>
void BaseMatrixT<real>::addDotMulVMM(BaseMatrixT& b, BaseMatrixT& c) {
  MatrixOffset offset(0, 0, 0, 0, 0, 0);
  int numRows = b.height_;
  int numCols = b.width_;
  aggregate(aggregate::sum(), base::binary::mul(), base::binary::add(), b, c,
            numRows, numCols, offset, true_type() /*aAsRowVector*/,
            false_type());
}

template<class T>
void BaseMatrixT<T>::addDotMulVMM2(BaseMatrixT& b, BaseMatrixT& c) {
  CHECK(!useGpu_) << "do not support gpu";

  CHECK_EQ(height_, 1LU);
  CHECK_EQ(b.height_, c.height_);
  CHECK_EQ(width_, b.width_);
  CHECK_EQ(width_, c.width_);
  size_t height = b.height_;
  size_t width = b.width_;
  T* A = this->data_;
  const T* B = b.data_;
  const T* C = c.data_;
  for (size_t i = 0; i < height; ++i, B += width, C += width) {
    for (size_t j = 0; j < width; ++j) {
      A[j] += B[j] * C[j];
    }
  }
}

DEFINE_MATRIX_TERNARY_OP(addDotMulMMV, a += b * c);
template<class T>
void BaseMatrixT<T>::addDotMulMMV(BaseMatrixT& b, BaseMatrixT& c) {
  MatrixOffset offset(0, 0, 0, 0, 0, 0);
  int numRows = height_;
  int numCols = width_;
  applyTernary(ternary::addDotMulMMV<T>(), b, c, numRows, numCols, offset,
               true_type() /*cAsRowVector*/, false_type());
}

template<class T>
void BaseMatrixT<T>::addDotMulMMV2(BaseMatrixT& b, BaseMatrixT& c) {
  CHECK(!useGpu_) << "do not support gpu";

  CHECK_EQ(c.height_, 1LU);
  CHECK_EQ(height_, b.height_);
  CHECK_EQ(width_, b.width_);
  CHECK_EQ(width_, c.width_);
  size_t height = height_;
  size_t width = width_;
  T* A = this->data_;
  const T* B = b.data_;
  const T* C = c.data_;
  for (size_t i = 0; i < height; ++i, A += width, B += width) {
    for (size_t j = 0; j < width; ++j) {
      A[j] += B[j] * C[j];
    }
  }
}

template<class T>
void BaseMatrixT<T>::rowScale(size_t cCol, BaseMatrixT& b, BaseMatrixT& c) {
  MatrixOffset offset(0, 0, 0, 0, cCol, 0);
  int numRows = height_;
  int numCols = width_;
  applyTernary(ternary::DotMul<T>(), b, c, numRows, numCols, offset,
    false_type(), true_type() /*cAsColVector*/);
}

template<class T>
void BaseMatrixT<T>::rowScale2(size_t cCol, BaseMatrixT& b, BaseMatrixT& c) {
  CHECK(!useGpu_) << "do not support gpu";

  size_t height = this->height_;
  size_t width = this->width_;
  CHECK_EQ(height, b.height_);
  CHECK_EQ(width, b.width_);
  CHECK_LT(cCol, c.width_);
  CHECK_EQ(height, c.height_);
  T* A = this->data_;
  const T* B = b.data_;
  const T* C = c.data_;
  for (size_t i = 0; i < height; ++i, A += width, B += width, C += c.width_) {
    for (size_t j = 0; j < width; ++j) {
      A[j] = B[j] * C[cCol];
    }
  }
}

template<class T>
void BaseMatrixT<T>::colScale(size_t cRow, BaseMatrixT& b, BaseMatrixT& c) {
  MatrixOffset offset(0, 0, 0, 0, 0, cRow);
  int numRows = height_;
  int numCols = width_;
  applyTernary(ternary::DotMul<T>(), b, c, numRows, numCols, offset,
               true_type() /* cAsRowVector */, false_type() /* cAsColVector */);
}

template<class T>
void BaseMatrixT<T>::addColScale(size_t cRow, BaseMatrixT& b, BaseMatrixT& c) {
  MatrixOffset offset(0, 0, 0, 0, 0, cRow);
  int numRows = height_;
  int numCols = width_;
  applyTernary(ternary::addDotMulMMV<T>(), b, c, numRows, numCols, offset,
               true_type() /* cAsRowVector */, false_type() /* cAsColVector */);
}

template<class T>
void BaseMatrixT<T>::addRowScale(size_t cCol, BaseMatrixT& b, BaseMatrixT& c) {
  MatrixOffset offset(0, 0, 0, 0, cCol, 0);
  int numRows = height_;
  int numCols = width_;
  applyTernary(ternary::addDotMulMMV<T>(), b, c, numRows, numCols, offset,
               false_type(), true_type() /*cAsColVector*/);
}

DEFINE_MATRIX_TERNARY_PARAMETER_OP(RowAdd, ONE_PARAMETER, a = b + p * c);
template<class T>
void BaseMatrixT<T>::rowAdd(size_t cCol, BaseMatrixT& b, BaseMatrixT& c, T p) {
  MatrixOffset offset(0, 0, 0, 0, cCol, 0);
  int numRows = height_;
  int numCols = width_;
  applyTernary(ternary::RowAdd<T>(p), b, c, numRows, numCols, offset,
    false_type(), true_type() /*cAsColVector*/);
}

DEFINE_MATRIX_TERNARY_OP(RowPow, a = pow(b, c));
template<>
void BaseMatrixT<real>::rowPow(size_t cCol, BaseMatrixT& b, BaseMatrixT& c) {
  if (useGpu_) {
    MatrixOffset offset(0, 0, 0, 0, cCol, 0);
    int numRows = height_;
    int numCols = width_;
    applyTernary(ternary::RowPow<real>(), b, c, numRows, numCols, offset,
                 false_type(), true_type() /*cAsColVector*/);
  } else {
    size_t height = this->height_;
    size_t width = this->width_;
    CHECK_EQ(height, b.height_);
    CHECK_EQ(width, b.width_);
    CHECK_LT(cCol, c.width_);
    CHECK_EQ(height, c.height_);
    real* A = this->data_;
    const real* B = b.data_;
    const real* C = c.data_;
    for (size_t i = 0; i < height; ++i, A += width, B += width, C += c.width_) {
      vPow(width, B, C[cCol], A);
    }
  }
}

template<class T>
void BaseMatrixT<T>::mulRowVector(BaseMatrixT& b) {
  MatrixOffset offset(0, 0, 0, 0);
  int numRows = height_;
  int numCols = width_;
  applyBinary(binary::DotMul<T>(), b, numRows, numCols, offset,
              true_type() /* bAsRowVector */, false_type());
}

DEFINE_MATRIX_BINARY_OP(DotDiv, a /= b);
template<class T>
void BaseMatrixT<T>::divRowVector(BaseMatrixT& b) {
  MatrixOffset offset(0, 0, 0, 0);
  int numRows = height_;
  int numCols = width_;
  applyBinary(binary::DotDiv<T>(), b, numRows, numCols, offset,
              true_type() /* bAsRowVector */, false_type());
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
template<class T>
void BaseMatrixT<T>::mulColVector(BaseMatrixT& b) {
  MatrixOffset offset(0, 0, 0, 0);
  int numRows = height_;
  int numCols = width_;
  applyBinary(binary::DotMul<T>(), b, numRows, numCols, offset,
              false_type(), true_type() /* bAsColVector */);
}

template<class T>
void BaseMatrixT<T>::divColVector(BaseMatrixT& b) {
  MatrixOffset offset(0, 0, 0, 0);
  int numRows = height_;
  int numCols = width_;
  applyBinary(binary::DotDiv<T>(), b, numRows, numCols, offset,
              false_type(), true_type() /* bAsColVector */);
}

Z
zhangjinchao01 已提交
1481 1482 1483 1484
template<>
template <class Agg>
int BaseMatrixT<real>::applyRow(Agg agg, BaseMatrixT& b) {
  MatrixOffset offset(0, 0, 0, 0, 0, 0);
Y
Yu Yang 已提交
1485 1486
  size_t numRows = b.height_;
  size_t numCols = b.width_;
X
xuwei06 已提交
1487 1488
  CHECK_EQ(height_, numRows);
  CHECK_EQ(width_, 1UL);
Z
zhangjinchao01 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
  aggregate(agg, base::unary::identity(), base::binary::second(), b, numRows,
            numCols, offset, false_type(), true_type() /*aAsColVector*/);

  return 0;
}

template<>
template <class Agg, class Saver>
int BaseMatrixT<real>::applyRow(Agg agg, Saver sv, BaseMatrixT& b) {
  MatrixOffset offset(0, 0, 0, 0, 0, 0);
Y
Yu Yang 已提交
1499 1500
  size_t numRows = b.height_;
  size_t numCols = b.width_;
X
xuwei06 已提交
1501 1502
  CHECK_EQ(height_, numRows);
  CHECK_EQ(width_, 1UL);
Z
zhangjinchao01 已提交
1503 1504 1505 1506 1507 1508
  aggregate(agg, base::unary::identity(), sv, b, numRows, numCols, offset,
            false_type(), true_type() /*aAsColVector*/);

  return 0;
}

X
xuwei06 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
template<>
template <class Agg>
int BaseMatrixT<real>::applyRow(
     Agg agg, real scaleDest, real scaleAgg, BaseMatrixT& b) {
  if (scaleDest != 0) {
    applyRow(agg, base::binary::add2(scaleDest, scaleAgg), b);
  } else {
    applyRow(agg, base::binary::second(), b);
    if (scaleAgg != 1) {
      mulScalar(scaleAgg);
    }
  }
  return 0;
}

X
xuwei06 已提交
1524 1525 1526 1527 1528
template<>
template <class Agg, class Op, class Saver>
int BaseMatrixT<real>::applyRow(Agg agg, Op op, Saver sv,
                                BaseMatrixT& b, BaseMatrixT& c) {
  MatrixOffset offset(0, 0, 0, 0, 0, 0);
Y
Yu Yang 已提交
1529 1530
  size_t numRows = b.height_;
  size_t numCols = b.width_;
X
xuwei06 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
  CHECK_EQ(height_, numRows);
  CHECK_EQ(width_, 1UL);
  CHECK_EQ(c.height_, numRows);
  CHECK_EQ(c.width_, numCols);
  aggregate(agg, op, sv,
            b, c, numRows, numCols, offset,
            false_type(), true_type() /*aAsColVector*/);
  return 0;
}

X
xuwei06 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
template<>
template <class Agg, class Op>
int BaseMatrixT<real>::applyRow(Agg agg, Op op, real scaleDest, real scaleAgg,
                                BaseMatrixT& b, BaseMatrixT& c) {
  if (scaleDest != 0) {
    applyRow(agg, op, base::binary::add2(scaleDest, scaleAgg), b, c);
  } else {
    applyRow(agg, op, base::binary::second(), b, c);
    if (scaleAgg != 1) {
      mulScalar(scaleAgg);
    }
  }
  return 0;
}

Z
zhangjinchao01 已提交
1556 1557 1558 1559
template<>
template <class Agg>
int BaseMatrixT<real>::applyCol(Agg agg, BaseMatrixT& b) {
  MatrixOffset offset(0, 0, 0, 0, 0, 0);
Y
Yu Yang 已提交
1560 1561
  size_t numRows = b.height_;
  size_t numCols = b.width_;
X
xuwei06 已提交
1562 1563
  CHECK_EQ(width_, numCols);
  CHECK_EQ(height_, 1UL);
Z
zhangjinchao01 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
  aggregate(agg, base::unary::identity(), base::binary::second(), b, numRows,
            numCols, offset, true_type() /*aAsRowVector*/, false_type());

  return 0;
}

template<>
template <class Agg, class Saver>
int BaseMatrixT<real>::applyCol(Agg agg, Saver sv, BaseMatrixT& b) {
  MatrixOffset offset(0, 0, 0, 0, 0, 0);
Y
Yu Yang 已提交
1574 1575
  size_t numRows = b.height_;
  size_t numCols = b.width_;
X
xuwei06 已提交
1576 1577
  CHECK_EQ(width_, numCols);
  CHECK_EQ(height_, 1UL);
Z
zhangjinchao01 已提交
1578 1579 1580 1581 1582 1583 1584
  aggregate(agg, base::unary::identity(), sv, b, numRows, numCols, offset,
            true_type() /*aAsRowVector*/, false_type());

  return 0;
}

template<>
X
xuwei06 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
template <class Agg>
int BaseMatrixT<real>::applyCol(
     Agg agg, real scaleDest, real scaleAgg, BaseMatrixT& b) {
  if (scaleDest != 0) {
    applyCol(agg, base::binary::add2(scaleDest, scaleAgg), b);
  } else {
    applyCol(agg, base::binary::second(), b);
    if (scaleAgg != 1) {
      mulScalar(scaleAgg);
    }
  }
  return 0;
}

Z
zhangjinchao01 已提交
1599
template<>
X
xuwei06 已提交
1600
void BaseMatrixT<real>::sumRows(BaseMatrixT& b, real scaleSum, real scaleDest) {
X
xuwei06 已提交
1601
  applyRow(aggregate::sum(), scaleDest, scaleSum, b);
Z
zhangjinchao01 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
}

template<>
void BaseMatrixT<real>::maxRows(BaseMatrixT& b) {
  applyRow(aggregate::max(), b);
}

template<>
void BaseMatrixT<real>::minRows(BaseMatrixT& b) {
  applyRow(aggregate::min(), b);
}

template<>
void BaseMatrixT<real>::maxCols(BaseMatrixT& b) {
  applyCol(aggregate::max(), b);
}

template<>
void BaseMatrixT<real>::minCols(BaseMatrixT& b) {
  applyCol(aggregate::min(), b);
}

template<>
X
xuwei06 已提交
1625
void BaseMatrixT<real>::sumCols(BaseMatrixT& b, real scaleSum, real scaleDest) {
X
xuwei06 已提交
1626
  applyCol(aggregate::sum(), scaleDest, scaleSum, b);
Z
zhangjinchao01 已提交
1627 1628 1629
}

template<>
X
xuwei06 已提交
1630 1631 1632
void BaseMatrixT<real>::sumOfSquaredDiffs(
    BaseMatrixT& b, BaseMatrixT& c, real scaleSum, real scaleDest) {
  applyRow(aggregate::sum(), base::binary::squaredDiff(),
X
xuwei06 已提交
1633
           scaleDest, scaleSum, b, c);
X
xuwei06 已提交
1634 1635 1636 1637 1638 1639
}

template<>
void BaseMatrixT<real>::sumOfProducts(
    BaseMatrixT& b, BaseMatrixT& c, real scaleSum, real scaleDest) {
  applyRow(aggregate::sum(), base::binary::mul(),
X
xuwei06 已提交
1640
           scaleDest, scaleSum, b, c);
Z
zhangjinchao01 已提交
1641 1642 1643 1644 1645
}

template class BaseMatrixT<real>;
template class BaseMatrixT<int>;
}  // namespace paddle