test_pixel_shuffle.py 8.2 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
R
ruri 已提交
16

17
import numpy as np
R
ruri 已提交
18
from op_test import OpTest
19

R
ruri 已提交
20 21
import paddle
import paddle.fluid as fluid
22 23
import paddle.fluid.core as core
import paddle.nn.functional as F
R
ruri 已提交
24 25


R
ruri 已提交
26 27 28
def pixel_shuffle_np(x, up_factor, data_format="NCHW"):
    if data_format == "NCHW":
        n, c, h, w = x.shape
29 30 31 32 33 34 35 36
        new_shape = (
            n,
            c // (up_factor * up_factor),
            up_factor,
            up_factor,
            h,
            w,
        )
R
ruri 已提交
37 38 39 40 41 42
        # reshape to (num,output_channel,upscale_factor,upscale_factor,h,w)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,output_channel,h,upscale_factor,w,upscale_factor)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, c // (up_factor * up_factor), h * up_factor, w * up_factor]
        npresult = np.reshape(npresult, oshape)
R
ruri 已提交
43 44 45
        return npresult
    else:
        n, h, w, c = x.shape
46 47 48 49 50 51 52 53
        new_shape = (
            n,
            h,
            w,
            c // (up_factor * up_factor),
            up_factor,
            up_factor,
        )
R
ruri 已提交
54 55 56 57 58 59 60 61 62 63 64 65
        # reshape to (num,h,w,output_channel,upscale_factor,upscale_factor)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,h,upscale_factor,w,upscale_factor,output_channel)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, h * up_factor, w * up_factor, c // (up_factor * up_factor)]
        npresult = np.reshape(npresult, oshape)
        return npresult


class TestPixelShuffleOp(OpTest):
    def setUp(self):
        self.op_type = "pixel_shuffle"
H
hong 已提交
66
        self.python_api = paddle.nn.functional.pixel_shuffle
R
ruri 已提交
67 68 69 70 71 72 73 74 75 76 77 78
        self.init_data_format()
        n, c, h, w = 2, 9, 4, 4

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        up_factor = 3

        x = np.random.random(shape).astype("float64")
        npresult = pixel_shuffle_np(x, up_factor, self.format)
R
ruri 已提交
79 80 81

        self.inputs = {'X': x}
        self.outputs = {'Out': npresult}
R
ruri 已提交
82 83 84 85
        self.attrs = {'upscale_factor': up_factor, "data_format": self.format}

    def init_data_format(self):
        self.format = "NCHW"
R
ruri 已提交
86 87

    def test_check_output(self):
H
hong 已提交
88
        self.check_output(check_eager=True)
R
ruri 已提交
89 90

    def test_check_grad(self):
H
hong 已提交
91
        self.check_grad(['X'], 'Out', check_eager=True)
R
ruri 已提交
92 93


R
ruri 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106
class TestChannelLast(TestPixelShuffleOp):
    def init_data_format(self):
        self.format = "NHWC"


class TestPixelShuffleAPI(unittest.TestCase):
    def setUp(self):
        self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float64")
        self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float64")
        self.out_1_np = pixel_shuffle_np(self.x_1_np, 3)
        self.out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
107 108 109
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
110 111 112
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
113 114 115 116 117 118
            x_1 = paddle.fluid.data(
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
            x_2 = paddle.fluid.data(
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
R
ruri 已提交
119 120 121 122
            out_1 = F.pixel_shuffle(x_1, 3)
            out_2 = F.pixel_shuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
123 124 125 126 127 128 129 130 131 132 133 134 135
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
R
ruri 已提交
136 137 138 139 140 141

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
142 143 144
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
145 146 147
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
148 149 150 151 152 153
            x_1 = paddle.fluid.data(
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
            x_2 = paddle.fluid.data(
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
R
ruri 已提交
154 155 156 157 158 159 160 161 162
            # init instance
            ps_1 = paddle.nn.PixelShuffle(3)
            ps_2 = paddle.nn.PixelShuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = pixel_shuffle_np(self.x_1_np, 3)
            out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
163 164 165 166 167 168 169 170 171 172 173 174 175
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
R
ruri 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, up_factor, data_format):

        n, c, h, w = 2, 9, 4, 4

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = pixel_shuffle_np(x, up_factor, data_format)

193 194 195
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
196 197 198 199
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

200 201 202
            pixel_shuffle = paddle.nn.PixelShuffle(
                up_factor, data_format=data_format
            )
R
ruri 已提交
203 204
            result = pixel_shuffle(paddle.to_tensor(x))

205
            np.testing.assert_allclose(result.numpy(), npresult, rtol=1e-05)
R
ruri 已提交
206

207 208 209 210 211 212
            result_functional = F.pixel_shuffle(
                paddle.to_tensor(x), 3, data_format
            )
            np.testing.assert_allclose(
                result_functional.numpy(), npresult, rtol=1e-05
            )
R
ruri 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

    def test_dygraph1(self):
        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        self.run_dygraph(3, "NHWC")


class TestPixelShuffleError(unittest.TestCase):
    def test_error_functional(self):
        def error_upscale_factor():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_upscale_factor)

        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3, "WOW")

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        def error_upscale_factor_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3.33)

        self.assertRaises(TypeError, error_upscale_factor_layer)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


R
ruri 已提交
253
if __name__ == '__main__':
H
hong 已提交
254
    paddle.enable_static()
R
ruri 已提交
255
    unittest.main()