fc_op.cc 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"

namespace paddle {
namespace operators {

class FCOp : public NetOp {
 public:
  FCOp(const std::string &type, const framework::VariableNameMap &inputs,
       const framework::VariableNameMap &outputs,
       const framework::AttributeMap &attrs)
      : NetOp(type, inputs, outputs, attrs) {
27 28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(!Inputs("X").empty(),
                   "Inputs(X) of FCOp should not be null.");
    PADDLE_ENFORCE(!Inputs("W").empty(),
                   "Inputs(W) of FCOp should not be null.");
    PADDLE_ENFORCE(!Outputs("MulOut").empty(),
                   "Outputs(MulOut) of FCOp should not be null.");
    PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName,
                      "Output(Out) of FCOp should not be null.");

L
Liu Yiqun 已提交
36 37
    auto x = Inputs("X");
    auto w = Inputs("W");
38
    auto mul_out = Outputs("MulOut");
L
Liu Yiqun 已提交
39 40 41 42
    PADDLE_ENFORCE_EQ(
        x.size(), w.size(),
        "The size of inputs X(%d) should be the same as that of weights W(%d).",
        x.size(), w.size());
43 44 45 46
    PADDLE_ENFORCE_EQ(mul_out.size(), x.size(),
                      "The size of intermediate mul_out(%d) should be the same "
                      "as that of inputs X(%d).",
                      mul_out.size(), x.size());
L
Liu Yiqun 已提交
47

48 49
    size_t n = x.size();
    PADDLE_ENFORCE_GE(n, static_cast<size_t>(1),
L
Liu Yiqun 已提交
50 51
                      "The size of inputs X(%d) should be no less than 1.", n);

52
    auto x_num_col_dims = Attr<std::vector<int>>("xNumColDims");
53 54 55 56 57 58 59 60 61 62 63 64 65

    // Set all values or set no values (use the default value)
    if (!x_num_col_dims.empty()) {
      PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n,
                        "The size of attribute xNumColDims(%d) should be the "
                        "same as that of inputs X(%d).",
                        x_num_col_dims.size(), n);
    } else {
      x_num_col_dims.resize(n);
      for (size_t i = 0; i < n; i++) {
        x_num_col_dims[i] = 1;
      }
    }
66

67
    // mul_out[i] = X[i] * W[i]
68 69 70
    for (size_t i = 0; i < n; i++) {
      framework::AttributeMap mul_attr;
      mul_attr["x_num_col_dims"] = static_cast<int>(x_num_col_dims[i]);
71
      mul_attr["y_num_col_dims"] = static_cast<int>(1);
72 73 74
      AppendOp(
          framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}},
                                          {{"Out", {mul_out[i]}}}, mul_attr));
75
    }
L
Liu Yiqun 已提交
76

77
    // sum_out = X[0] * W[0] + ... + X[n-1] * W[n-1]
78
    auto sum_out = mul_out[0];
79
    if (n > 1) {
80 81 82 83
      PADDLE_ENFORCE_NE(Output("SumOut"), framework::kEmptyVarName,
                        "Output(SumOut) of FCOp should not be null when the "
                        "size of Inputs(X) > 1.");

84 85 86
      sum_out = Output("SumOut");
      AppendOp(framework::OpRegistry::CreateOp("sum", {{"X", {mul_out}}},
                                               {{"Out", {sum_out}}}, {}));
87
    } else {
88 89 90
      if (Output("SumOut") != framework::kEmptyVarName) {
        this->Rename(Output("SumOut"), framework::kEmptyVarName);
      }
L
Liu Yiqun 已提交
91
    }
92

93
    // add_out = sum_out + b
94
    auto b = Input("B");
95
    auto add_out = sum_out;
96
    if (b != framework::kEmptyVarName) {
97 98 99 100
      PADDLE_ENFORCE_NE(
          Output("AddOut"), framework::kEmptyVarName,
          "Output(AddOut) of FCOp should not be null when Input(B) is set.");

101
      add_out = Output("AddOut");
102
      AppendOp(framework::OpRegistry::CreateOp(
L
Luo Tao 已提交
103
          "elementwise_add", {{"X", {sum_out}}, {"Y", {Input("B")}}},
104
          {{"Out", {add_out}}}, {}));
105
    } else {
106 107
      if (Output("AddOut") != framework::kEmptyVarName) {
        this->Rename(Output("AddOut"), framework::kEmptyVarName);
108
      }
109 110
    }

L
Liu Yiqun 已提交
111
    auto activation = Attr<std::string>("activation");
112 113
    AppendOp(framework::OpRegistry::CreateOp(activation, {{"X", {add_out}}},
                                             {{"Y", {Output("Out")}}}, {}));
114 115 116 117 118 119 120 121
    CompleteAddOp(false);
  }
};

class FCOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
122 123 124 125 126
    AddInput("X",
             "(A vector of Tensors) each input Tensor can be of arbitrary "
             "dimension, and will be reshaped to a 2-D matrix of size "
             "(minibatch, number_of_input_features) according to attribute "
             "xNumColDims.")
127
        .AsDuplicable();
128 129 130 131
    AddInput("W",
             "(A vector of Tensors) the weights of FC operator, a "
             "vector of 2-D matrix of size "
             "(number_of_input_features, number_of_neurons).")
132
        .AsDuplicable();
133 134 135
    AddInput("B",
             "(Tensor) the bias of FC operator, a 1-D vector of size "
             "number_of_neurons.");
136

137
    AddOutput("Out",
138 139
              "(Tensor) the activated output matrix of FC operator, a 2-D "
              "matrix of size (minibatch, number_of_neurons).");
140
    AddOutput("MulOut",
141 142
              "(A vector of Tensors) the intermediate outputs of FC operator, "
              "each Tensor saving the product of X_i * W_i.")
143 144
        .AsIntermediate()
        .AsDuplicable();
145 146 147 148
    AddOutput(
        "SumOut",
        "(Tensor) the intermediate output of FC operator, "
        "saving the sum of the products of X and W, that is sum{X_i * W_i}.")
149
        .AsIntermediate();
150
    AddOutput("AddOut",
151 152
              "(Tensor) the non-actived output of FC operator, "
              "saving sum{X_i * W_i} + B.")
153
        .AsIntermediate();
154 155 156
    AddAttr<std::string>(
        "activation",
        "(string, default identity) the activation type of FC operator.")
157 158
        .SetDefault("identity")
        .InEnum({"identity", "sigmoid", "softmax"});
159 160 161 162 163 164 165 166 167 168
    AddAttr<std::vector<int>>(
        "xNumColDims",
        "(std::vector<int>) The inputs Tensors of FC operator can be of "
        "more than 2 dimensions. In that case, each input Tensor `X_i` will be "
        "reshaped to a 2-D matrix. The matrix's first dimension "
        "(the length of column) will be the product of `X_i`'s last "
        "`xNumColDims_i` dimensions, that is "
        "`X_i.dims[0] x ... x X_i.dims[xNumColDims_i - 1]`. "
        "The matrix's second dimension (the length of row) will be the product "
        "of `X_i`'s first `rank - xNumColDims_i` dimensions, that is "
169 170
        "`X_i.dims[xNumColDims_i] x ... x X_i.dims[rank - 1]`)")
        .SetDefault(std::vector<int>{});
171 172 173 174 175 176 177 178 179 180

    AddComment(R"DOC(
Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer
in Convolutional Neural Networks. Neurons in a fully connected layer have
full connections to all activations in the previous layer.
It computes an inner product of a set of
learned weights with a matrix multiplication followed by a bias offset
(optionally).

Equation:
181
  Out = Act(sum_n{X_i * W_i} + B)
182

183 184 185 186
where X_i is Tensor that will be reshaped to a 2-D matrix of size (M x K),
usually M is the minibatch size and K is the number of input features.
W_i is a 2-D matrix of size (K x N), where N means the number of neurons
in the fully connected layer. B is a 1-D vector of size N.
187
Thus, the output Out is a 2-D matrix of size (M x N).
188
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.
189 190 191

All the inputs can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with first input (`X[0]`).
192 193 194 195 196 197 198 199
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
200
REGISTER_OP_WITHOUT_GRADIENT(fc, ops::FCOp, ops::FCOpMaker);