executor.cc 4.9 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/executor.h"
Y
Yang Yang 已提交
16

Y
Yang Yang 已提交
17
#include <algorithm>
Y
Yang Yang 已提交
18
#include <iostream>
Q
qijun 已提交
19
#include <memory>
Y
Yang Yang 已提交
20
#include <set>
Y
Yang Yang 已提交
21
#include <vector>
Y
Yang Yang 已提交
22

Y
Yang Yang 已提交
23
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
24
#include "paddle/framework/op_registry.h"
Q
qijun 已提交
25
#include "paddle/framework/scope.h"
Q
qijun 已提交
26

Y
Yang Yang 已提交
27 28
#include <boost/range/adaptor/reversed.hpp>

Q
qijun 已提交
29 30 31
namespace paddle {
namespace framework {

Y
Yang Yang 已提交
32 33 34
const std::string kFeedOpType = "feed";
const std::string kFetchOpType = "fetch";

35
std::vector<bool> Prune(const ProgramDesc& pdesc, int block_id) {
Y
Yang Yang 已提交
36
  // TODO(tonyyang-svail):
Y
Yang Yang 已提交
37
  //    - will change to use multiple blocks for RNN op and Cond Op
Y
Yang Yang 已提交
38

Y
Yang Yang 已提交
39
  auto& block = pdesc.blocks(block_id);
Y
Yang Yang 已提交
40 41 42 43
  auto& ops = block.ops();

  bool expect_feed = true;
  for (auto& op_desc : ops) {
Y
Yang Yang 已提交
44
    PADDLE_ENFORCE(op_desc.type() != kFeedOpType || expect_feed,
Y
Yang Yang 已提交
45
                   "All FeedOps are at the beginning of the ProgramDesc");
Y
Yang Yang 已提交
46
    expect_feed = (op_desc.type() == kFeedOpType);
Y
Yang Yang 已提交
47 48 49 50 51
  }

  bool expect_fetch = true;
  for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
    auto& op_desc = *op_iter;
Y
Yang Yang 已提交
52
    PADDLE_ENFORCE(op_desc.type() != kFetchOpType || expect_fetch,
Y
Yang Yang 已提交
53
                   "All FetchOps must at the end of the ProgramDesc");
Y
Yang Yang 已提交
54
    expect_fetch = (op_desc.type() == kFetchOpType);
Y
Yang Yang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  }

  std::set<std::string> dependent_vars;
  std::vector<bool> should_run;
  for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
    auto& op_desc = *op_iter;

    bool found_dependent_vars = false;
    for (auto& var : op_desc.outputs()) {
      for (auto& argu : var.arguments()) {
        if (dependent_vars.count(argu) != 0) {
          found_dependent_vars = true;
        }
      }
    }

Y
Yang Yang 已提交
71
    if (op_desc.type() == kFetchOpType || found_dependent_vars) {
Y
Yang Yang 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
      // erase its output to the dependency graph
      for (auto& var : op_desc.outputs()) {
        for (auto& argu : var.arguments()) {
          dependent_vars.erase(argu);
        }
      }

      // insert its input to the dependency graph
      for (auto& var : op_desc.inputs()) {
        for (auto& argu : var.arguments()) {
          dependent_vars.insert(argu);
        }
      }

      should_run.push_back(true);
    } else {
      should_run.push_back(false);
Q
qijun 已提交
89 90
    }
  }
Y
Yang Yang 已提交
91

Y
Yang Yang 已提交
92 93 94 95
  // TODO(tonyyang-svail):
  //    - check this after integration of Init
  // PADDLE_ENFORCE(dependent_vars.empty());

Y
Yang Yang 已提交
96 97 98 99 100
  // since we are traversing the ProgramDesc in reverse order
  // we reverse the should_run vector
  std::reverse(should_run.begin(), should_run.end());

  return should_run;
Q
qijun 已提交
101 102
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
Executor::Executor(const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
  device_contexts_.resize(places.size());
  for (size_t i = 0; i < places.size(); i++) {
    if (platform::is_cpu_place(places[i])) {
      device_contexts_[i] = new platform::CPUDeviceContext(
          boost::get<platform::CPUPlace>(places[i]));
    } else if (platform::is_gpu_place(places[i])) {
#ifdef PADDLE_WITH_CUDA
      device_contexts_[i] = new platform::CUDADeviceContext(
          boost::get<platform::GPUPlace>(places[i]));
#else
      PADDLE_THROW("'GPUPlace' is not supported in CPU only device.");
#endif
    }
  }
}

Executor::~Executor() {
  for (auto& device_context : device_contexts_) {
    delete device_context;
  }
}

void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) {
  // TODO(tonyyang-svail):
  //    - only runs on the first device (i.e. no interdevice communication)
  //    - will change to use multiple blocks for RNN op and Cond Op
  PADDLE_ENFORCE_GT(pdesc.blocks_size(), block_id);
  auto& block = pdesc.blocks(block_id);
  auto& device = device_contexts_[0];

  // Instantiate all the vars in the global scope
  for (auto& var : block.vars()) {
    scope->NewVar(var.name());
  }

  Scope& local_scope = scope->NewScope();

  std::vector<bool> should_run = Prune(pdesc, block_id);
  PADDLE_ENFORCE_EQ(should_run.size(), static_cast<size_t>(block.ops_size()));
  for (size_t i = 0; i < should_run.size(); ++i) {
    if (should_run[i]) {
      for (auto& var : block.ops(i).outputs()) {
        for (auto& argu : var.arguments()) {
          if (local_scope.FindVar(argu) == nullptr) {
            local_scope.NewVar(argu);
          }
        }
      }
      auto op = paddle::framework::OpRegistry::CreateOp(block.ops(i));
      op->Run(local_scope, *device);
    }
  }

  // TODO(tonyyang-svail):
  //  - Destroy local_scope
}

Q
qijun 已提交
162 163
}  // namespace framework
}  // namespace paddle