test_elementwise_div_op.py 4.7 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
gongweibao 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest
G
gongweibao 已提交
19 20 21 22 23


class ElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
W
Wu Yi 已提交
24 25
        self.dtype = np.float32
        self.init_dtype()
G
gongweibao 已提交
26 27 28 29 30 31
        """ Warning
        CPU gradient check error!
        'X': np.random.random((32,84)).astype("float32"),
        'Y': np.random.random((32,84)).astype("float32")
        """
        self.inputs = {
W
Wu Yi 已提交
32 33
            'X': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype),
            'Y': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
G
gongweibao 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))

W
Wu Yi 已提交
51 52 53
    def init_dtype(self):
        pass

G
gongweibao 已提交
54

55 56 57 58 59 60 61 62 63 64
class TestElementwiseDivOp_scalar(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype(np.float32),
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float32)
        }
        self.outputs = {'Out': self.inputs['X'] / self.inputs['Y']}


G
gongweibao 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
class TestElementwiseDivOp_Vector(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [32]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [32]).astype("float32")
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_0(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [2]).astype("float32")
        }

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out':
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
        }


class TestElementwiseDivOp_broadcast_1(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [3]).astype("float32")
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
        }


class TestElementwiseDivOp_broadcast_2(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [4]).astype("float32")
        }

        self.outputs = {
            'Out':
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
        }


class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [3, 4]).astype("float32")
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
        }


W
Wu Yi 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
class TestElementwiseDivOpFp16(ElementwiseDivOp):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=1, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=1, no_grad_set=set('Y'))


G
gongweibao 已提交
150 151
if __name__ == '__main__':
    unittest.main()