softmax_impl.h 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
19

20
#include "paddle/fluid/operators/math/blas.h"
21 22 23 24 25 26 27 28 29 30 31
namespace paddle {
namespace operators {
namespace math {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
32
    const T kThreshold = static_cast<T>(-64.);
33 34 35 36
    return x < kThreshold ? kThreshold : x;
  }
};

37 38
template <typename DeviceContext, typename T, bool is_test, typename Enable>
void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
39 40
    const DeviceContext& context, const framework::Tensor* X,
    framework::Tensor* Y) {
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  auto logits = EigenMatrix<T>::From(*X);
  auto softmax = EigenMatrix<T>::From(*Y);

  const int kBatchDim = 0;
  const int kClassDim = 1;

  const int batch_size = logits.dimension(kBatchDim);
  const int num_classes = logits.dimension(kClassDim);

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);

  auto shifted_logits = (logits -
                         logits.maximum(along_class)
                             .eval()
                             .reshape(batch_by_one)
                             .broadcast(one_by_class))
                            .unaryExpr(ValueClip<T>());

Q
QI JUN 已提交
61 62 63 64 65 66 67
  softmax.device(*context.eigen_device()) = shifted_logits.exp();
  softmax.device(*context.eigen_device()) = (softmax *
                                             softmax.sum(along_class)
                                                 .inverse()
                                                 .eval()
                                                 .reshape(batch_by_one)
                                                 .broadcast(one_by_class));
68 69
}

70 71 72 73
template <class DeviceContext>
using enable_if_CPU = typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type;

74
template <typename DeviceContext>
75
class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
76 77
  void operator()(const DeviceContext& context, const framework::Tensor* X,
                  framework::Tensor* Y) {
78 79 80
    auto in_dims = X->dims();
    const float* in_data = X->data<float>();
    float* out_data = Y->data<float>();
81 82
    const int kBatchDim = 0;
    const int kClassDim = 1;
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    // 2D data. Batch x C
    const int batch_size = in_dims[kBatchDim];
    const int num_classes = in_dims[kClassDim];
    std::vector<float> entities(batch_size);
    auto blas = math::GetBlas<DeviceContext, float>(context);
    for (int n = 0; n < batch_size; ++n) {
      entities[n] = in_data[n * num_classes];
      for (int c = 1; c < num_classes; ++c) {
        entities[n] = in_data[n * num_classes + c] > entities[n]
                          ? in_data[n * num_classes + c]
                          : entities[n];
      }
      for (int c = 0; c < num_classes; ++c) {
        out_data[n * num_classes + c] =
            in_data[n * num_classes + c] - entities[n];
      }
    }

    blas.VEXP(num_classes * batch_size, out_data, out_data);
    for (int n = 0; n < batch_size; ++n) {
J
Jacek Czaja 已提交
103 104
      auto sum = blas.ASUM(num_classes, &out_data[n * num_classes], 1);
      blas.SCAL(num_classes, 1.0f / sum, &out_data[n * num_classes]);
105
    }
106 107 108 109
  }
};

template <typename DeviceContext, typename T>
Q
QI JUN 已提交
110 111
void SoftmaxGradFunctor<DeviceContext, T>::operator()(
    const DeviceContext& context, const framework::Tensor* y,
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    const framework::Tensor* y_grad, framework::Tensor* x_grad) {
  auto softmax = EigenMatrix<T>::From(*y);
  auto softmax_grad = EigenMatrix<T>::From(*y_grad);
  auto logits_grad = EigenMatrix<T>::From(*x_grad);

  const int kBatchDim = 0;
  const int kClassDim = 1;

  const int batch_size = softmax.dimension(kBatchDim);
  const int num_classes = softmax.dimension(kClassDim);

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);

  auto dot = (softmax * softmax_grad)
                 .sum(along_class)
                 .eval()
                 .reshape(batch_by_one)
                 .broadcast(one_by_class);
Q
QI JUN 已提交
132
  logits_grad.device(*context.eigen_device()) = (softmax_grad - dot) * softmax;
133 134 135 136 137
}

}  // namespace math
}  // namespace operators
}  // namespace paddle