dlpack_tensor.cc 4.0 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/dlpack_tensor.h"

namespace paddle {
namespace framework {

namespace internal {
template <typename T>
static ::DLDataType GetDLDataTypeCode() {
  ::DLDataType dtype;
  if (std::is_same<T, platform::float16>::value ||
      std::is_floating_point<T>::value) {
    dtype.code = kDLFloat;
  } else if (std::is_unsigned<T>::value) {
    dtype.code = kDLUInt;
  } else if (std::is_integral<T>::value) {
    dtype.code = kDLInt;
  } else {
    PADDLE_THROW("Unsupported data type %s", typeid(T).name());
  }
  dtype.bits = 8 * sizeof(T);
  dtype.lanes = 1;
  return dtype;
}

static DLDataType GetDLDataTypeFromTypeIndex(const std::type_index &type) {
#define REG_DL_DATA_TYPE(type) \
  { std::type_index(typeid(type)), GetDLDataTypeCode<type>() }
  static const std::unordered_map<std::type_index, ::DLDataType>
      type_to_dtype_map({
          REG_DL_DATA_TYPE(platform::float16),  // NOLINT
          REG_DL_DATA_TYPE(float),              // NOLINT
          REG_DL_DATA_TYPE(double),             // NOLINT
          REG_DL_DATA_TYPE(int),                // NOLINT
          REG_DL_DATA_TYPE(int64_t),            // NOLINT
          REG_DL_DATA_TYPE(bool),               // NOLINT
          REG_DL_DATA_TYPE(size_t),             // NOLINT
          REG_DL_DATA_TYPE(int16_t),            // NOLINT
          REG_DL_DATA_TYPE(uint8_t),            // NOLINT
          REG_DL_DATA_TYPE(int8_t)              // NOLINT
      });
  static auto type_to_dtype_map_end_it = type_to_dtype_map.end();
  auto it = type_to_dtype_map.find(type);
  PADDLE_ENFORCE(it != type_to_dtype_map_end_it, "Unsupported data type %s",
                 type.name());
  return it->second;
#undef REG_DL_DATA_TYPE
}

struct DLContextVisitor : public boost::static_visitor<::DLContext> {
  inline ::DLContext operator()(const platform::CPUPlace &place) const {
S
sneaxiy 已提交
65
    ::DLContext ctx;
S
sneaxiy 已提交
66 67 68 69 70 71 72
    ctx.device_type = kDLCPU;
    ctx.device_id = 0;
    return ctx;
  }

  inline ::DLContext operator()(const platform::CUDAPlace &place) const {
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
73
    ::DLContext ctx;
S
sneaxiy 已提交
74 75 76 77 78 79 80 81 82 83
    ctx.device_type = kDLGPU;
    ctx.device_id = place.device;
    return ctx;
#else
    PADDLE_THROW("platform::CUDAPlace is not supported in CPU only version");
#endif
  }

  inline ::DLContext operator()(const platform::CUDAPinnedPlace &place) const {
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
84
    ::DLContext ctx;
S
sneaxiy 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    ctx.device_type = kDLCPUPinned;
    ctx.device_id = 0;
    return ctx;
#else
    PADDLE_THROW(
        "platform::CUDAPinnedPlace is not supported in CPU only version");
#endif
  }
};
}  // namespace internal

DLPackTensor::DLPackTensor(const Tensor &tensor, LaneType lanes) {
  // init data, data buffer
  t_.data = const_cast<void *>(tensor.data<void>());

  // init ctx, DLContext type with device_type and device_id
  auto place = tensor.place();
  t_.ctx = boost::apply_visitor(internal::DLContextVisitor(), place);

  // init dtype
  t_.dtype = internal::GetDLDataTypeFromTypeIndex(tensor.type());
  t_.dtype.lanes = lanes;

  // init ndim, tensor rank
  auto &dims = tensor.dims();
  using DimType = decltype(t_.ndim);  // int
  t_.ndim = static_cast<DimType>(dims.size());

  // init shape, tensor dims
  t_.shape = shape_;
  for (DimType i = 0; i < t_.ndim; ++i) {
    t_.shape[i] = dims[i];
  }

  // init strides, nullptr means the tensor is compact
  t_.strides = nullptr;

  // init byte_offset
  t_.byte_offset = 0;
}

}  // namespace framework
}  // namespace paddle