pool2d_op.h 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

B
baojun 已提交
17
#include <memory>
18
#include <string>
B
baojun 已提交
19
#include <unordered_map>
20 21 22
#include <vector>

#include "ngraph/ngraph.hpp"
23
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include "paddle/fluid/platform/ngraph_helper.h"

namespace paddle {
namespace operators {
namespace ngraphs {

void BuildPool2dNode(
    const std::shared_ptr<paddle::framework::OperatorBase>& op,
    std::shared_ptr<
        std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
        ngb_node_map) {
  auto op_attrs = paddle::framework::AttrReader(op->Attrs());
  auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
  auto x_shape = x->get_shape();

  std::string pooling_type = op_attrs.Get<std::string>("pooling_type");
  std::vector<int> ksize = op_attrs.Get<std::vector<int>>("ksize");
  std::vector<int> strides = op_attrs.Get<std::vector<int>>("strides");
  std::vector<int> paddings = op_attrs.Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE_EQ(x_shape.size() - 2, ksize.size(),
                    "Handling 2d pooling only");

  if (op_attrs.Get<bool>("global_pooling")) {
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
      ksize[i] = static_cast<int>(x_shape.at(i + 2));
    }
  }

  ngraph::Shape ng_padding_below{static_cast<size_t>(paddings.at(0)),
                                 static_cast<size_t>(paddings.at(1))};
  ngraph::Shape ng_padding_above{static_cast<size_t>(paddings.at(0)),
                                 static_cast<size_t>(paddings.at(1))};
  ngraph::Shape ng_ksize_shape{static_cast<size_t>(ksize.at(0)),
                               static_cast<size_t>(ksize.at(1))};
  ngraph::Strides ng_strides{static_cast<size_t>(strides.at(0)),
                             static_cast<size_t>(strides.at(1))};

63
  auto ComputeFlooredOutput = [](size_t in, size_t k, size_t p, size_t s) {
64 65
    return (in - k + 2 * p) / s + 1;
  };
66 67 68
  auto ComputeCeiledOutput = [](size_t in, size_t k, size_t p, size_t s) {
    return ceil(static_cast<float>(in - k + 2 * p) / s) + 1;
  };
69 70 71

  if (op_attrs.Get<bool>("ceil_mode")) {
    for (size_t i = 0; i < ng_padding_above.size(); ++i) {
72 73 74 75 76
      auto ceiled_size = ComputeCeiledOutput(x_shape[i + 2], ksize[i],
                                             paddings[i], strides[i]);
      auto floored_size = ComputeFlooredOutput(x_shape[i + 2], ksize[i],
                                               paddings[i], strides[i]);
      if (ceiled_size != floored_size) {
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        ng_padding_above[i] += strides[i];
      }
    }
  }

  bool padding_exclusive = op_attrs.Get<bool>("exclusive");
  if (pooling_type == "max") {
    auto pool2d = std::make_shared<ngraph::op::MaxPool>(
        x, ng_ksize_shape, ng_strides, ng_padding_below, ng_padding_above);
    paddle::platform::SetOutputNode(op, "Out", pool2d, ngb_node_map);
  } else if (pooling_type == "avg") {
    std::shared_ptr<ngraph::Node> pool2d;
    if (op_attrs.Get<bool>("adaptive")) {
      auto ComputeAdaptive = [](size_t in, size_t k) {
        return std::floor(in / k);
      };
      ng_strides[0] = x_shape.size() == 4
                          ? ComputeAdaptive(x_shape[3], ksize[0])
                          : ng_strides[0];
      ng_strides[1] = x_shape.size() == 4
                          ? ComputeAdaptive(x_shape[3], ksize[0])
                          : ng_strides[1];
      pool2d =
          std::make_shared<ngraph::op::AvgPool>(x, ng_ksize_shape, ng_strides);
    } else {
102 103 104 105
      if ((ng_padding_below[0] == 0) && (ng_padding_below[1] == 0) &&
          (ng_padding_above[0] == 0) && (ng_padding_above[1] == 0)) {
        padding_exclusive = false;
      }
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
      pool2d = std::make_shared<ngraph::op::AvgPool>(
          x, ng_ksize_shape, ng_strides, ng_padding_below, ng_padding_above,
          !padding_exclusive);
    }
    paddle::platform::SetOutputNode(op, "Out", pool2d, ngb_node_map);
  } else {
    PADDLE_THROW("Support max and avg pooling only");
  }
}

void BuildPool2dGradNode(
    const std::shared_ptr<paddle::framework::OperatorBase>& op,
    std::shared_ptr<
        std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
        ngb_node_map) {
  auto op_attrs = paddle::framework::AttrReader(op->Attrs());
  auto out = paddle::platform::GetInputNode(op, "Out", ngb_node_map);
  auto dout = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map);
  auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
  auto x_shape = x->get_shape();

  std::string pooling_type = op_attrs.Get<std::string>("pooling_type");
  std::vector<int> ksize = op_attrs.Get<std::vector<int>>("ksize");
  std::vector<int> strides = op_attrs.Get<std::vector<int>>("strides");
  std::vector<int> paddings = op_attrs.Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE_EQ(x_shape.size() - 2, ksize.size(),
                    "Handling 2d pooling only");

  if (op_attrs.Get<bool>("global_pooling")) {
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
      ksize[i] = static_cast<int>(x_shape.at(i + 2));
    }
  }

  ngraph::Shape ng_padding_below{static_cast<size_t>(paddings.at(0)),
                                 static_cast<size_t>(paddings.at(1))};
  ngraph::Shape ng_padding_above{static_cast<size_t>(paddings.at(0)),
                                 static_cast<size_t>(paddings.at(1))};
  ngraph::Shape ng_ksize_shape{static_cast<size_t>(ksize.at(0)),
                               static_cast<size_t>(ksize.at(1))};
  ngraph::Strides ng_strides{static_cast<size_t>(strides.at(0)),
                             static_cast<size_t>(strides.at(1))};

  bool padding_exclusive = op_attrs.Get<bool>("exclusive");
  if (pooling_type == "max") {
    auto pool2d_grad = std::make_shared<ngraph::op::MaxPoolBackprop>(
        x, dout, out, ng_ksize_shape, ng_strides, ng_padding_below,
        ng_padding_above);
    paddle::platform::SetOutputNode(op, "X@GRAD", pool2d_grad, ngb_node_map);
  } else if (pooling_type == "avg") {
    std::shared_ptr<ngraph::Node> pool2d_grad;
    if (op_attrs.Get<bool>("adaptive")) {
      auto ComputeAdaptive = [](size_t in, size_t k) {
        return std::floor(in / k);
      };
      ng_strides[0] = x_shape.size() == 4
                          ? ComputeAdaptive(x_shape[3], ksize[0])
                          : ng_strides[0];
      ng_strides[1] = x_shape.size() == 4
                          ? ComputeAdaptive(x_shape[3], ksize[0])
                          : ng_strides[1];
      pool2d_grad = std::make_shared<ngraph::op::AvgPoolBackprop>(
          x->get_shape(), dout, ng_ksize_shape, ng_strides, ng_padding_below,
          ng_padding_above, !padding_exclusive);
    } else {
173 174 175 176
      if ((ng_padding_below[0] == 0) && (ng_padding_below[1] == 0) &&
          (ng_padding_above[0] == 0) && (ng_padding_above[1] == 0)) {
        padding_exclusive = false;
      }
177 178 179 180 181 182 183 184 185 186 187 188
      pool2d_grad = std::make_shared<ngraph::op::AvgPoolBackprop>(
          x->get_shape(), dout, ng_ksize_shape, ng_strides, ng_padding_below,
          ng_padding_above, !padding_exclusive);
    }
    paddle::platform::SetOutputNode(op, "X@GRAD", pool2d_grad, ngb_node_map);
  } else {
    PADDLE_THROW("Support max and avg pooling only");
  }
}
}  // namespace ngraphs
}  // namespace operators
}  // namespace paddle
189 190 191

REGISTER_NG_OP(pool2d, BuildPool2dNode);
REGISTER_NG_OP(pool2d_grad, BuildPool2dGradNode);