test_imperative_optimizer.py 5.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

M
minqiyang 已提交
17 18 19
import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
20
import six
M
minqiyang 已提交
21

M
minqiyang 已提交
22
import paddle
M
minqiyang 已提交
23 24
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
25
from paddle.fluid.optimizer import SGDOptimizer
26
from paddle.fluid.imperative.nn import FC
27
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
28
from test_imperative_base import new_program_scope
29 30


31
class MLP(fluid.imperative.Layer):
32
    def __init__(self, param_attr=None, bias_attr=None):
33 34
        self._fc1 = FC(10)
        self._fc2 = FC(10)
35

36 37 38 39
    def forward(self, inputs):
        y = self._fc1(inputs)
        y = self._fc2(y)
        return y
40

M
minqiyang 已提交
41

42 43 44
class TestImperativeOptimizerBase(unittest.TestCase):
    def setUp(self):
        self.batch_num = 2
M
minqiyang 已提交
45

46 47
    def get_optimizer(self):
        self.optimizer = SGDOptimizer(learning_rate=1e-3)
M
minqiyang 已提交
48

49
    def test_optimizer_float32(self):
M
minqiyang 已提交
50
        seed = 90
M
minqiyang 已提交
51
        with fluid.imperative.guard():
M
minqiyang 已提交
52 53 54
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

55 56
            mlp = MLP()
            self.get_optimizer()
M
minqiyang 已提交
57
            train_reader = paddle.batch(
M
minqiyang 已提交
58
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
M
minqiyang 已提交
59

M
minqiyang 已提交
60
            dy_param_init_value = {}
M
minqiyang 已提交
61
            for batch_id, data in enumerate(train_reader()):
62
                if batch_id >= self.batch_num:
M
minqiyang 已提交
63 64
                    break

M
minqiyang 已提交
65
                dy_x_data = np.array(
M
minqiyang 已提交
66 67 68
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)
69

M
minqiyang 已提交
70
                img = to_variable(dy_x_data)
71 72 73
                label = to_variable(y_data)
                label._stop_gradient = True

74 75
                cost = mlp(img)
                avg_loss = fluid.layers.reduce_mean(cost)
M
minqiyang 已提交
76
                dy_out = avg_loss._numpy()
M
minqiyang 已提交
77

M
minqiyang 已提交
78 79 80 81 82
                if batch_id == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        dy_param_init_value[param.name] = param._numpy()

M
minqiyang 已提交
83
                avg_loss._backward()
84
                self.optimizer.minimize(avg_loss)
85
                mlp.clear_gradients()
M
minqiyang 已提交
86 87 88 89
                dy_param_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
90 91 92 93 94

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
95 96
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
M
minqiyang 已提交
97

M
minqiyang 已提交
98
            mnist = MNIST()
99
            self.get_optimizer()
M
minqiyang 已提交
100
            train_reader = paddle.batch(
M
minqiyang 已提交
101
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
M
minqiyang 已提交
102 103 104 105 106

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
107 108
            avg_loss = fluid.layers.reduce_mean(cost)
            self.optimizer.minimize(avg_loss)
M
minqiyang 已提交
109 110

            # initialize params and fetch them
M
minqiyang 已提交
111
            static_param_init_value = {}
M
minqiyang 已提交
112
            static_param_name_list = []
M
minqiyang 已提交
113
            for param in mnist.parameters():
M
minqiyang 已提交
114 115 116 117 118 119
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
M
minqiyang 已提交
120
                static_param_init_value[static_param_name_list[i]] = out[i]
M
minqiyang 已提交
121 122

            for batch_id, data in enumerate(train_reader()):
123
                if batch_id >= self.batch_num:
M
minqiyang 已提交
124 125
                    break

M
minqiyang 已提交
126
                static_x_data = np.array(
M
minqiyang 已提交
127 128 129 130
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])

M
minqiyang 已提交
131
                fetch_list = [avg_loss.name]
M
minqiyang 已提交
132 133
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
M
minqiyang 已提交
134
                              feed={"pixel": static_x_data,
M
minqiyang 已提交
135 136 137 138 139 140 141 142 143
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
                static_out = out[0]
                for i in range(1, len(out)):
                    static_param_value[static_param_name_list[i - 1]] = out[i]

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
144
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
M
minqiyang 已提交
145

M
minqiyang 已提交
146
        self.assertTrue(np.allclose(static_out, dy_out))
M
minqiyang 已提交
147

M
minqiyang 已提交
148
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
149
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
M
minqiyang 已提交
150 151 152 153


if __name__ == '__main__':
    unittest.main()