test_mean_op.py 15.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
liaogang 已提交
15
import unittest
16 17

import gradient_checker
L
liaogang 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
A
arlesniak 已提交
20
from op_test import OpTest, OpTestTool
21 22
from test_sum_op import TestReduceOPTensorAxisBase

23
import paddle
24
import paddle.fluid as fluid
25
import paddle.fluid.core as core
26
import paddle.fluid.layers as layers
27
from paddle.fluid import Program, program_guard
28

29 30
np.random.seed(10)

L
liaogang 已提交
31

32
def mean_wrapper(x, axis=None, keepdim=False, reduce_all=False):
33
    if reduce_all:
34
        return paddle.mean(x, list(range(len(x.shape))), keepdim)
35 36 37 38
    return paddle.mean(x, axis, keepdim)


def reduce_mean_wrapper(x, axis=0, keepdim=False, reduce_all=False):
39
    if reduce_all:
40
        return paddle.mean(x, list(range(len(x.shape))), keepdim)
41 42 43
    return paddle.mean(x, axis, keepdim)


Q
qijun 已提交
44
class TestMeanOp(OpTest):
L
liaogang 已提交
45
    def setUp(self):
Q
qijun 已提交
46
        self.op_type = "mean"
47
        self.python_api = paddle.mean
48
        self.dtype = np.float64
C
chengduo 已提交
49 50
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Q
qijun 已提交
51
        self.outputs = {'Out': np.mean(self.inputs["X"])}
L
liaogang 已提交
52

C
chengduo 已提交
53 54 55
    def init_dtype_type(self):
        pass

Q
qijun 已提交
56
    def test_check_output(self):
57
        self.check_output(check_eager=True)
L
liaogang 已提交
58

Q
qijun 已提交
59
    def test_checkout_grad(self):
60
        self.check_grad(['X'], 'Out', check_eager=True)
61 62


63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
class TestMeanOp_ZeroDim(OpTest):
    def setUp(self):
        self.op_type = "mean"
        self.python_api = paddle.mean
        self.dtype = np.float64
        self.inputs = {'X': np.random.random([]).astype(self.dtype)}
        self.outputs = {'Out': np.mean(self.inputs["X"])}

    def test_check_output(self):
        self.check_output(check_eager=True)

    def test_checkout_grad(self):
        self.check_grad(['X'], 'Out', check_eager=True)


78
class TestMeanOpError(unittest.TestCase):
79 80 81 82
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of mean_op must be Variable.
            input1 = 12
83
            self.assertRaises(TypeError, paddle.mean, input1)
84
            # The input dtype of mean_op must be float16, float32, float64.
85 86 87
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32"
            )
88
            self.assertRaises(TypeError, paddle.mean, input2)
89 90 91
            input3 = fluid.layers.data(
                name='input3', shape=[4], dtype="float16"
            )
92
            paddle.nn.functional.softmax(input3)
93 94


95 96 97
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
chengduo 已提交
98 99 100
class TestFP16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.float16
S
sneaxiy 已提交
101
        self.__class__.no_need_check_grad = True
C
chengduo 已提交
102 103 104 105

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
106
            self.check_output_with_place(place, check_eager=True)
C
chengduo 已提交
107 108 109 110

    def test_checkout_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
S
sneaxiy 已提交
111 112 113 114
            with fluid.dygraph.guard():
                x_np = np.random.random((10, 10)).astype(self.dtype)
                x = paddle.to_tensor(x_np)
                x.stop_gradient = False
115
                y = paddle.mean(x)
S
sneaxiy 已提交
116 117
                dx = paddle.grad(y, x)[0].numpy()
                dx_expected = self.dtype(1.0 / np.prod(x_np.shape)) * np.ones(
118 119
                    x_np.shape
                ).astype(self.dtype)
120
                np.testing.assert_array_equal(dx, dx_expected)
C
chengduo 已提交
121 122


A
arlesniak 已提交
123 124 125 126 127 128 129
@OpTestTool.skip_if_not_cpu_bf16()
class TestBF16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        paddle.enable_static()
130
        self.check_output_with_place(core.CPUPlace(), check_eager=True)
A
arlesniak 已提交
131 132 133

    def test_checkout_grad(self):
        place = core.CPUPlace()
134
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
A
arlesniak 已提交
135 136


137 138 139 140 141 142 143 144
def ref_reduce_mean(x, axis=None, keepdim=False, reduce_all=False):
    if isinstance(axis, list):
        axis = tuple(axis)
    if reduce_all:
        axis = None
    return np.mean(x, axis=axis, keepdims=keepdim)


145
def ref_reduce_mean_grad(x, axis, dtype, reduce_all):
S
sneaxiy 已提交
146 147 148 149 150 151 152
    if reduce_all:
        axis = list(range(x.ndim))

    shape = [x.shape[i] for i in axis]
    return (1.0 / np.prod(shape) * np.ones(shape)).astype(dtype)


153 154 155
class TestReduceMeanOp(OpTest):
    def setUp(self):
        self.op_type = 'reduce_mean'
156
        self.python_api = reduce_mean_wrapper
157 158 159 160 161 162 163 164
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]
        self.axis = [0]
        self.keepdim = False
        self.set_attrs()

        np.random.seed(10)
        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
S
sneaxiy 已提交
165 166 167
        if not hasattr(self, "reduce_all"):
            self.reduce_all = (not self.axis) or len(self.axis) == len(x_np)

168 169 170 171 172 173
        out_np = ref_reduce_mean(x_np, self.axis, self.keepdim, self.reduce_all)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}
        self.attrs = {
            'dim': self.axis,
            'keep_dim': self.keepdim,
174
            'reduce_all': self.reduce_all,
175 176
        }

S
sneaxiy 已提交
177 178 179
        if self.dtype == 'float16':
            self.__class__.no_need_check_grad = True

180 181 182 183
    def set_attrs(self):
        pass

    def test_check_output(self):
S
sneaxiy 已提交
184
        if self.dtype != 'float16':
185
            self.check_output(check_eager=True)
S
sneaxiy 已提交
186 187 188 189 190
        else:
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            self.check_output_with_place(place=place)
191 192

    def test_check_grad(self):
S
sneaxiy 已提交
193
        if self.dtype != 'float16':
194
            self.check_grad(['X'], ['Out'], check_eager=True)
S
sneaxiy 已提交
195 196 197 198 199 200 201 202
        else:
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            if core.is_float16_supported(place):
                return
            with fluid.dygraph.guard(place=place):
                x = paddle.tensor(self.inputs['X'])
203 204 205
                y = paddle.mean(
                    x, axis=self.attrs['dim'], keepdim=self.attrs['keep_dim']
                )
S
sneaxiy 已提交
206
                dx = paddle.grad(y, x)[0].numpy()
207
                dx_expected = ref_reduce_mean_grad(
208 209 210 211
                    self.inputs['X'],
                    self.attrs['dim'],
                    self.dtype,
                    self.attrs['reduce_all'],
212
                )
213
                np.testing.assert_array_equal(dx, dx_expected)
214 215 216 217 218


class TestReduceMeanOpDefaultAttrs(TestReduceMeanOp):
    def setUp(self):
        self.op_type = 'reduce_mean'
219
        self.python_api = reduce_mean_wrapper
220 221 222 223 224 225 226 227 228 229 230 231 232 233
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]

        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out_np = np.mean(x_np, axis=0)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}


class TestReduceMeanOpFloat32(TestReduceMeanOp):
    def set_attrs(self):
        self.dtype = 'float32'


S
sneaxiy 已提交
234 235 236 237 238
class TestReduceMeanOpFloat16(TestReduceMeanOp):
    def set_attrs(self):
        self.dtype = 'float16'


239 240 241 242 243
class TestReduceMeanOpShape1D(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [100]


S
sneaxiy 已提交
244 245 246 247 248 249
class TestReduceMeanOpShape1DFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [100]
        self.dtype = 'float16'


250 251 252 253 254
class TestReduceMeanOpShape6D(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]


S
sneaxiy 已提交
255 256 257 258 259 260
class TestReduceMeanOpShape6DFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]
        self.dtype = 'float16'


261 262 263 264 265
class TestReduceMeanOpAxisAll(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]


S
sneaxiy 已提交
266 267 268 269 270 271
class TestReduceMeanOpAxisAllFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.dtype = 'float16'


272 273 274 275 276
class TestReduceMeanOpAxisTuple(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = (0, 1, 2)


S
sneaxiy 已提交
277 278 279 280 281 282
class TestReduceMeanOpAxisTupleFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = (0, 1, 2)
        self.dtype = 'float16'


283 284 285 286 287
class TestReduceMeanOpAxisNegative(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [-2, -1]


S
sneaxiy 已提交
288 289 290 291 292 293
class TestReduceMeanOpAxisNegativeFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [-2, -1]
        self.dtype = 'float16'


294 295 296 297 298
class TestReduceMeanOpKeepdimTrue1(TestReduceMeanOp):
    def set_attrs(self):
        self.keepdim = True


S
sneaxiy 已提交
299 300 301 302 303 304
class TestReduceMeanOpKeepdimTrue1FP16(TestReduceMeanOp):
    def set_attrs(self):
        self.keepdim = True
        self.dtype = 'float16'


305 306 307 308 309 310
class TestReduceMeanOpKeepdimTrue2(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True


S
sneaxiy 已提交
311 312 313 314 315 316 317
class TestReduceMeanOpKeepdimTrue2FP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True
        self.dtype = 'float16'


318 319 320 321 322
class TestReduceMeanOpReduceAllTrue(TestReduceMeanOp):
    def set_attrs(self):
        self.reduce_all = True


S
sneaxiy 已提交
323 324 325 326 327 328
class TestReduceMeanOpReduceAllTrueFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.reduce_all = True
        self.dtype = 'float16'


329
class TestMeanAPI(unittest.TestCase):
330
    # test paddle.tensor.stat.mean
331 332 333 334

    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
335 336 337
        self.place = (
            paddle.CUDAPlace(0)
            if core.is_compiled_with_cuda()
338
            else paddle.CPUPlace()
339
        )
340 341

    def test_api_static(self):
Z
Fix  
zhupengyang 已提交
342
        paddle.enable_static()
343
        with paddle.static.program_guard(paddle.static.Program()):
344
            x = paddle.fluid.data('X', self.x_shape)
345 346 347 348 349 350 351 352
            out1 = paddle.mean(x)
            out2 = paddle.tensor.mean(x)
            out3 = paddle.tensor.stat.mean(x)
            axis = np.arange(len(self.x_shape)).tolist()
            out4 = paddle.mean(x, axis)
            out5 = paddle.mean(x, tuple(axis))

            exe = paddle.static.Executor(self.place)
353 354 355
            res = exe.run(
                feed={'X': self.x}, fetch_list=[out1, out2, out3, out4, out5]
            )
356 357
        out_ref = np.mean(self.x)
        for out in res:
358
            np.testing.assert_allclose(out, out_ref, rtol=0.0001)
359

Z
Fix  
zhupengyang 已提交
360 361 362
    def test_api_dygraph(self):
        paddle.disable_static(self.place)

363
        def test_case(x, axis=None, keepdim=False):
Z
Zhou Wei 已提交
364
            x_tensor = paddle.to_tensor(x)
365 366 367 368 369 370
            out = paddle.mean(x_tensor, axis, keepdim)
            if isinstance(axis, list):
                axis = tuple(axis)
                if len(axis) == 0:
                    axis = None
            out_ref = np.mean(x, axis, keepdims=keepdim)
371
            np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.0001)
372 373 374 375 376 377 378 379 380 381 382

        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])
        paddle.enable_static()

383 384 385
    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data("x", shape=[10, 10], dtype="float32")
386
            out = paddle.mean(x=x, axis=1)
387 388 389 390
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x_np = np.random.rand(10, 10).astype(np.float32)
            res = exe.run(feed={"x": x_np}, fetch_list=[out])
391
        np.testing.assert_allclose(res[0], np.mean(x_np, axis=1), rtol=1e-05)
392 393 394 395

        with fluid.dygraph.guard():
            x_np = np.random.rand(10, 10).astype(np.float32)
            x = fluid.dygraph.to_variable(x_np)
396
            out = paddle.mean(x=x, axis=1)
397 398 399
        np.testing.assert_allclose(
            out.numpy(), np.mean(x_np, axis=1), rtol=1e-05
        )
400

401
    def test_errors(self):
402 403 404 405 406
        paddle.disable_static()
        x = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        x = paddle.to_tensor(x)
        self.assertRaises(Exception, paddle.mean, x, -3)
        self.assertRaises(Exception, paddle.mean, x, 2)
Z
Fix  
zhupengyang 已提交
407
        paddle.enable_static()
408
        with paddle.static.program_guard(paddle.static.Program()):
409
            x = paddle.fluid.data('X', [10, 12], 'int32')
410 411 412
            self.assertRaises(TypeError, paddle.mean, x)


413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
class TestMeanWithTensorAxis1(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([1, 2], dtype='int64')
        self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64')


class TestMeanWithTensorAxis2(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 10, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
431
            paddle.to_tensor([2], 'int64'),
432 433 434
        ]


435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
class TestMeanDoubleGradCheck(unittest.TestCase):
    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

450 451 452
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
453
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
454 455 456
        gradient_checker.double_grad_check_for_dygraph(
            self.mean_wrapper, [data], out, x_init=[data_arr], place=place
        )
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMeanTripleGradCheck(unittest.TestCase):
    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

482 483 484
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
485
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
486 487 488
        gradient_checker.triple_grad_check_for_dygraph(
            self.mean_wrapper, [data], out, x_init=[data_arr], place=place
        )
489 490 491 492 493 494 495 496 497 498

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
499
if __name__ == "__main__":
500
    paddle.enable_static()
L
liaogang 已提交
501
    unittest.main()