simple_on_word2vec.cc 2.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file contains a simple demo for how to take a model for inference.
 */

#include <glog/logging.h>
#include <gtest/gtest.h>
#include <memory>
#include "paddle/contrib/inference/paddle_inference_api.h"

namespace paddle {
namespace demo {

DEFINE_string(dirname, "", "Directory of the inference model.");

void Main(bool use_gpu) {
  //# 1. Create PaddlePredictor with a config.
  NativeConfig config;
  config.model_dir = FLAGS_dirname + "word2vec.inference.model";
  config.use_gpu = use_gpu;
  config.fraction_of_gpu_memory = 0.15;
  config.device = 0;
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);

  for (int batch_id = 0; batch_id < 3; batch_id++) {
    //# 2. Prepare input.
    int64_t data[4] = {1, 2, 3, 4};

    PaddleBuf buf{.data = data, .length = sizeof(data)};
    PaddleTensor tensor{.name = "",
                        .shape = std::vector<int>({4, 1}),
                        .data = buf,
                        .dtype = PaddleDType::INT64};

    // For simplicity, we set all the slots with the same data.
    std::vector<PaddleTensor> slots(4, tensor);

    //# 3. Run
    std::vector<PaddleTensor> outputs;
    CHECK(predictor->Run(slots, &outputs));

    //# 4. Get output.
Y
Yan Chunwei 已提交
57
    ASSERT_EQ(outputs.size(), 1UL);
58 59 60 61 62 63 64 65 66 67
    LOG(INFO) << "output buffer size: " << outputs.front().data.length;
    const size_t num_elements = outputs.front().data.length / sizeof(float);
    // The outputs' buffers are in CPU memory.
    for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
      LOG(INFO) << static_cast<float*>(outputs.front().data.data)[i];
    }
  }
}

TEST(demo, word2vec_cpu) { Main(false /*use_gpu*/); }
T
tensor-tang 已提交
68 69

#ifdef PADDLE_WITH_CUDA
70
TEST(demo, word2vec_gpu) { Main(true /*use_gpu*/); }
T
tensor-tang 已提交
71
#endif
72 73 74

}  // namespace demo
}  // namespace paddle