grid_sample_grad_kernel.cu 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
17 18 19 20 21
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/gpu/grid_sample_utils.h"
22
#include "paddle/phi/kernels/grid_sample_grad_kernel.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

namespace phi {

template <typename T>
static __forceinline__ __device__ void AtomicAdd(
    T* data, int h, int w, int sH, int sW, int H, int W, T delta) {
  if (InBounds(h, w, H, W)) {
    paddle::platform::CudaAtomicAdd(data + h * sH + w * sW, delta);
  }
}

template <typename T>
static __forceinline__ __device__ T
UnnormalizeWithMask(T coord, int size, bool align_corners, T* grad_in) {
  if (align_corners) {
    *grad_in = static_cast<T>(size - 1) / 2;
    return ((coord + 1.f) / 2) * (size - 1);
  } else {
    *grad_in = static_cast<T>(size) / 2;
    return ((coord + 1.f) * size - 1) / 2;
  }
}

template <typename T>
static __forceinline__ __device__ T ClipIndexesWithMask(T in,
                                                        int clip_limit,
                                                        T* grad_in) {
  if (in <= static_cast<T>(0)) {
    *grad_in = static_cast<T>(0);
    return static_cast<T>(0);
  } else {
    T max = static_cast<T>(clip_limit - 1);
    if (in >= max) {
      *grad_in = static_cast<T>(0);
      return max;
    } else {
      *grad_in = static_cast<T>(1);
      return in;
    }
  }
}

template <typename T>
static __forceinline__ __device__ T
ReflectIndexesWithMask(T in, int twice_low, int twice_high, T* grad_in) {
  if (twice_low == twice_high) {
    *grad_in = static_cast<T>(0);
    return static_cast<T>(0);
  }
  int grad_in_mult_;
  T min = static_cast<T>(twice_low) / 2;
  T span = static_cast<T>(twice_high - twice_low) / 2;
  in = in - min;
  if (in < static_cast<T>(0)) {
    grad_in_mult_ = -1;
    in = -in;
  } else {
    grad_in_mult_ = 1;
  }
  T extra = fmod(in, span);
  int flips = static_cast<int>(floor(in / span));
  if (flips % 2 == 0) {
    *grad_in = static_cast<T>(grad_in_mult_);
    return extra + min;
  } else {
    *grad_in = static_cast<T>(-grad_in_mult_);
    return span - extra + min;
  }
}

template <typename T>
static __forceinline__ __device__ T
ComputePositionsWithMask(T coord,
                         int size,
                         PaddingMode padding_mode,
                         bool align_corners,
                         T* grad_in) {
  T grad_clip, grad_refl;
  coord = UnnormalizeWithMask<T>(coord, size, align_corners, grad_in);
  if (padding_mode == PaddingMode::border) {
    coord = ClipIndexesWithMask(coord, size, &grad_clip);
    *grad_in = (*grad_in) * grad_clip;
  } else if (padding_mode == PaddingMode::reflect) {
    if (align_corners) {
      coord = ReflectIndexesWithMask(coord, 0, 2 * (size - 1), &grad_refl);
    } else {
      coord = ReflectIndexesWithMask(coord, -1, 2 * size - 1, &grad_refl);
    }
    coord = ClipIndexesWithMask(coord, size, &grad_clip);
    *grad_in = (*grad_in) * grad_refl * grad_clip;
  }

  return coord;
}

template <typename T>
__global__ void GridSamplerCudaBackwardKernel(const int nthreads,
                                              const T* grad_output,
                                              const T* input,
                                              const T* grid,
                                              int n,
                                              int out_c,
                                              int out_h,
                                              int out_w,
                                              int in_h,
                                              int in_w,
                                              T* grad_input,
                                              T* grad_grid,
                                              const Mode mode,
                                              const PaddingMode padding_mode,
                                              bool align_corners) {
  int inp_sN = out_c * in_h * in_w;
  int inp_sC = in_h * in_w;
  int inp_sH = in_w;
  int inp_sW = 1;
  int grid_sN = out_h * out_w * 2;
  int grid_sH = out_w * 2;
  int grid_sW = 2;
  int grid_sCoor = 1;

  int gOut_sN = out_c * out_h * out_w;
  int gOut_sC = out_h * out_w;
  int gOut_sH = out_w;
  int gOut_sW = 1;

  CUDA_KERNEL_LOOP(index, nthreads) {
    const int w = index % out_w;
    const int h = (index / out_w) % out_h;
    const int n = index / (out_h * out_w);
    const int grid_offset = n * grid_sN + h * grid_sH + w * grid_sW;

    T ix = grid[grid_offset];
    T iy = grid[grid_offset + grid_sCoor];

    T gix_mult, giy_mult;
    ix = ComputePositionsWithMask(
        ix, in_w, padding_mode, align_corners, &gix_mult);
    iy = ComputePositionsWithMask(
        iy, in_h, padding_mode, align_corners, &giy_mult);

    if (mode == Mode::bilinear) {
      int ix_nw = static_cast<int>(floor(ix));
      int iy_nw = static_cast<int>(floor(iy));
      int ix_ne = ix_nw + 1;
      int iy_ne = iy_nw;
      int ix_sw = ix_nw;
      int iy_sw = iy_nw + 1;
      int ix_se = ix_nw + 1;
      int iy_se = iy_nw + 1;

      T nw = (ix_se - ix) * (iy_se - iy);
      T ne = (ix - ix_sw) * (iy_sw - iy);
      T sw = (ix_ne - ix) * (iy - iy_ne);
      T se = (ix - ix_nw) * (iy - iy_nw);

      T gix = static_cast<T>(0), giy = static_cast<T>(0);
      int gOut_offset = n * gOut_sN + h * gOut_sH + w * gOut_sW;
      T* gInp_ptr_NC = grad_input + n * inp_sN;
      int inp_offset_NC = n * inp_sN;
      for (int c = 0; c < out_c; ++c,
               inp_offset_NC += inp_sC,
               gInp_ptr_NC += inp_sC,
               gOut_offset += gOut_sC) {
        T gOut = grad_output[gOut_offset];

        AtomicAdd(
            gInp_ptr_NC, iy_nw, ix_nw, inp_sH, inp_sW, in_h, in_w, nw * gOut);
        AtomicAdd(
            gInp_ptr_NC, iy_ne, ix_ne, inp_sH, inp_sW, in_h, in_w, ne * gOut);
        AtomicAdd(
            gInp_ptr_NC, iy_sw, ix_sw, inp_sH, inp_sW, in_h, in_w, sw * gOut);
        AtomicAdd(
            gInp_ptr_NC, iy_se, ix_se, inp_sH, inp_sW, in_h, in_w, se * gOut);

        if (InBounds(iy_nw, ix_nw, in_h, in_w)) {
          T nw_val = input[inp_offset_NC + iy_nw * inp_sH + ix_nw * inp_sW];
          gix -= nw_val * (iy_se - iy) * gOut;
          giy -= nw_val * (ix_se - ix) * gOut;
        }
        if (InBounds(iy_ne, ix_ne, in_h, in_w)) {
          T ne_val = input[inp_offset_NC + iy_ne * inp_sH + ix_ne * inp_sW];
          gix += ne_val * (iy_sw - iy) * gOut;
          giy -= ne_val * (ix - ix_sw) * gOut;
        }
        if (InBounds(iy_sw, ix_sw, in_h, in_w)) {
          T sw_val = input[inp_offset_NC + iy_sw * inp_sH + ix_sw * inp_sW];
          gix -= sw_val * (iy - iy_ne) * gOut;
          giy += sw_val * (ix_ne - ix) * gOut;
        }
        if (InBounds(iy_se, ix_se, in_h, in_w)) {
          T se_val = input[inp_offset_NC + iy_se * inp_sH + ix_se * inp_sW];
          gix += se_val * (iy - iy_nw) * gOut;
          giy += se_val * (ix - ix_nw) * gOut;
        }
      }

      if (grad_grid != nullptr) {
        T* gGrid_ptr_NHW = grad_grid + index * grid_sW;
        gGrid_ptr_NHW[0] = gix_mult * gix;
        gGrid_ptr_NHW[1] = giy_mult * giy;
      }
    } else if (mode == Mode::nearest) {
      int ix_nearest = static_cast<int>(std::nearbyint(ix));
      int iy_nearest = static_cast<int>(std::nearbyint(iy));

      int gOut_offset = n * gOut_sN + h * gOut_sH + w * gOut_sW;
      T* gInp_ptr_NC = grad_input + n * inp_sN;
      for (int c = 0; c < out_c;
           ++c, gInp_ptr_NC += inp_sC, gOut_offset += gOut_sC) {
        AtomicAdd(gInp_ptr_NC,
                  iy_nearest,
                  ix_nearest,
                  inp_sH,
                  inp_sW,
                  in_h,
                  in_w,
                  grad_output[gOut_offset]);
      }

      if (grad_grid != nullptr) {
        T* gGrid_ptr_NHW = grad_grid + index * grid_sW;
        gGrid_ptr_NHW[0] = static_cast<T>(0);
        gGrid_ptr_NHW[1] = static_cast<T>(0);
      }
    }
  }
}

template <typename T, typename Context>
void GridSampleGradKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& grid,
                          const DenseTensor& out_grad,
                          const std::string& mode,
                          const std::string& padding_mode,
                          bool align_corners,
                          DenseTensor* x_grad,
                          DenseTensor* grid_grad) {
  PaddingMode enum_padding_mode;
  Mode enum_mode;
  if (padding_mode == "border") {
    enum_padding_mode = PaddingMode::border;
  } else if (padding_mode == "reflection") {
    enum_padding_mode = PaddingMode::reflect;
  } else {
    enum_padding_mode = PaddingMode::zeros;
  }

  if (mode == "nearest") {
    enum_mode = Mode::nearest;
  } else {
    enum_mode = Mode::bilinear;
  }

  const int n = grid.dims()[0];
  const int out_h = grid.dims()[1];
  const int out_w = grid.dims()[2];
  const int c = x.dims()[1];
  const int in_h = x.dims()[2];
  const int in_w = x.dims()[3];

  dev_ctx.template Alloc<T>(x_grad);
  phi::funcs::SetConstant<Context, T>()(dev_ctx, x_grad, static_cast<T>(0));

  T* grid_grad_data = nullptr;
  if (grid_grad != nullptr) {
    grid_grad_data = dev_ctx.template Alloc<T>(grid_grad);
  }

  int count = static_cast<int>(n * out_h * out_w);
  auto cu_stream = dev_ctx.stream();
  backends::gpu::GpuLaunchConfig config =
      backends::gpu::GetGpuLaunchConfig1D(dev_ctx, count);
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
  GridSamplerCudaBackwardKernel<T>
      <<<config.block_per_grid, config.thread_per_block, 0, cu_stream>>>(
          count,
          out_grad.data<T>(),
          x.data<T>(),
          grid.data<T>(),
          n,
          c,
          out_h,
          out_w,
          in_h,
          in_w,
          x_grad->data<T>(),
          grid_grad_data,
          enum_mode,
          enum_padding_mode,
          align_corners);
313 314 315 316 317 318 319 320 321 322
}

}  // namespace phi

PD_REGISTER_KERNEL(grid_sample_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::GridSampleGradKernel,
                   float,
                   double) {}