math_function.cu 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <vector>
16

17 18 19 20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
22 23 24 25 26
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/math_function_impl.h"
27

28
namespace phi {
29 30
namespace funcs {

31 32
using float16 = phi::dtype::float16;
using bfloat16 = phi::dtype::bfloat16;
33 34

template struct SetConstant<paddle::platform::CUDADeviceContext,
35
                            phi::dtype::float16>;
36
template struct SetConstant<paddle::platform::CUDADeviceContext,
37
                            phi::dtype::bfloat16>;
38 39 40 41 42 43 44 45
template struct SetConstant<paddle::platform::CUDADeviceContext, float>;
template struct SetConstant<paddle::platform::CUDADeviceContext, double>;
template struct SetConstant<paddle::platform::CUDADeviceContext, uint8_t>;
template struct SetConstant<paddle::platform::CUDADeviceContext, int>;
template struct SetConstant<paddle::platform::CUDADeviceContext, int16_t>;
template struct SetConstant<paddle::platform::CUDADeviceContext, int64_t>;
template struct SetConstant<paddle::platform::CUDADeviceContext, bool>;
template struct SetConstant<paddle::platform::CUDADeviceContext,
46
                            phi::dtype::complex<float>>;
47
template struct SetConstant<paddle::platform::CUDADeviceContext,
48
                            phi::dtype::complex<double>>;
49

50 51 52 53 54 55 56 57 58 59 60
template struct SetConstant<phi::GPUContext, phi::dtype::float16>;
template struct SetConstant<phi::GPUContext, phi::dtype::bfloat16>;
template struct SetConstant<phi::GPUContext, float>;
template struct SetConstant<phi::GPUContext, double>;
template struct SetConstant<phi::GPUContext, uint8_t>;
template struct SetConstant<phi::GPUContext, int>;
template struct SetConstant<phi::GPUContext, int16_t>;
template struct SetConstant<phi::GPUContext, int64_t>;
template struct SetConstant<phi::GPUContext, bool>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<float>>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<double>>;
61 62

template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
63
                            phi::dtype::float16>;
64
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
65
                            phi::dtype::bfloat16>;
66 67 68 69 70 71 72 73
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, float>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, double>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, uint8_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int16_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int64_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, bool>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
74
                            phi::dtype::complex<float>>;
75
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
76
                            phi::dtype::complex<double>>;
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

#define DEFINE_GPU_TRANS(RANK)                                                 \
  template struct Transpose<paddle::platform::CUDADeviceContext, bool, RANK>;  \
  template struct Transpose<paddle::platform::CUDADeviceContext, float, RANK>; \
  template struct Transpose<paddle::platform::CUDADeviceContext,               \
                            double,                                            \
                            RANK>;                                             \
  template struct Transpose<paddle::platform::CUDADeviceContext,               \
                            float16,                                           \
                            RANK>;                                             \
  template struct Transpose<paddle::platform::CUDADeviceContext,               \
                            bfloat16,                                          \
                            RANK>;                                             \
  template struct Transpose<paddle::platform::CUDADeviceContext,               \
                            int8_t,                                            \
                            RANK>;                                             \
  template struct Transpose<paddle::platform::CUDADeviceContext,               \
                            int32_t,                                           \
                            RANK>;                                             \
  template struct Transpose<paddle::platform::CUDADeviceContext,               \
                            int64_t,                                           \
                            RANK>;                                             \
  template struct Transpose<paddle::platform::CUDADeviceContext,               \
100
                            phi::dtype::complex<float>,                        \
101 102
                            RANK>;                                             \
  template struct Transpose<paddle::platform::CUDADeviceContext,               \
103
                            phi::dtype::complex<double>,                       \
104
                            RANK>;                                             \
105 106 107 108 109 110 111 112 113 114
  template struct Transpose<phi::GPUContext, bool, RANK>;                      \
  template struct Transpose<phi::GPUContext, float, RANK>;                     \
  template struct Transpose<phi::GPUContext, double, RANK>;                    \
  template struct Transpose<phi::GPUContext, float16, RANK>;                   \
  template struct Transpose<phi::GPUContext, bfloat16, RANK>;                  \
  template struct Transpose<phi::GPUContext, int8_t, RANK>;                    \
  template struct Transpose<phi::GPUContext, int32_t, RANK>;                   \
  template struct Transpose<phi::GPUContext, int64_t, RANK>;                   \
  template struct Transpose<phi::GPUContext,                                   \
                            phi::dtype::complex<float>,                        \
115
                            RANK>;                                             \
116
  template struct Transpose<phi::GPUContext, phi::dtype::complex<double>, RANK>;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

DEFINE_GPU_TRANS(1);
DEFINE_GPU_TRANS(2);
DEFINE_GPU_TRANS(3);
DEFINE_GPU_TRANS(4);
DEFINE_GPU_TRANS(5);
DEFINE_GPU_TRANS(6);

#define REINTERPRET(T, DST_PTR, SRC_PTR) \
  T* DST_PTR = reinterpret_cast<T*>(SRC_PTR)

template <typename T>
__global__ void TransposeNormalKernel(const T* in_ptr,
                                      T* out_ptr,
                                      int64_t element,
                                      const int64_t* in_stride_ptr,
                                      const int64_t* out_stride_ptr,
                                      const int64_t* axis_ptr,
                                      int rank) {
  CUDA_KERNEL_LOOP(out_idx, element) {
    int64_t in_idx = 0;
    int64_t tmp_idx = out_idx;
    for (int i = 0; i < rank; ++i) {
      const int64_t coordinate = tmp_idx / out_stride_ptr[i];
      tmp_idx -= coordinate * out_stride_ptr[i];
      in_idx += coordinate * in_stride_ptr[axis_ptr[i]];
    }
    out_ptr[out_idx] = in_ptr[in_idx];
  }
}

148 149 150 151 152 153 154
template <typename DeviceContext, typename T>
void TransposeNormal<DeviceContext, T>::operator()(
    const DeviceContext& context,
    const paddle::framework::Tensor& in,
    paddle::framework::Tensor* out,
    const std::vector<int>& axis) {
  const int rank = axis.size();
155 156
  auto in_stride = phi::stride(in.dims());
  auto out_stride = phi::stride(out->dims());
157 158
  auto* in_ptr = in.data<T>();
  auto* out_ptr = out->data<T>();
159

160 161 162 163 164 165 166 167 168 169 170 171
  // copy in_stride, out_stride, axis to gpu device
  const paddle::platform::CUDAPlace& cuda_place = context.GetPlace();
  paddle::platform::CPUPlace cpu_place = paddle::platform::CPUPlace();
  size_t size = 3 * rank * sizeof(int64_t);
  auto cpu_buf_holder = paddle::memory::Alloc(cpu_place, size);
  auto cuda_buf_holder = paddle::memory::Alloc(cuda_place, size);
  REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
  REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
  for (int i = 0; i < rank; ++i) {
    cpu_buf[i] = in_stride[i];
    cpu_buf[rank + i] = out_stride[i];
    cpu_buf[2 * rank + i] = axis[i];
172
  }
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  paddle::memory::Copy(
      cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
  REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
  REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
  REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

  const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
  const int MAX_GRID_DIM = context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
  int64_t elements = in.numel();
  int block_size = (elements >= MAX_BLOCK_DIM)
                       ? MAX_BLOCK_DIM
                       : (1 << static_cast<int>(std::log2(elements)));
  int grid_size = elements / block_size;
  grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
  TransposeNormalKernel<T><<<grid_size, block_size, 0, context.stream()>>>(
      in_ptr, out_ptr, elements, in_stride_ptr, out_stride_ptr, axis_ptr, rank);
}
190

H
hong 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
template <typename T>
struct TransposeNormal<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& in,
                  DenseTensor* out,
                  const std::vector<int>& axis) {
    const int rank = axis.size();
    auto in_stride = stride(in.dims());
    auto out_stride = stride(out->dims());
    auto* in_ptr = in.data<T>();
    auto* out_ptr = out->data<T>();

    // copy in_stride, out_stride, axis to gpu device
    const phi::GPUPlace& cuda_place = context.GetPlace();
    phi::CPUPlace cpu_place = paddle::platform::CPUPlace();
    size_t size = 3 * rank * sizeof(int64_t);
    auto cpu_buf_holder = paddle::memory::Alloc(cpu_place, size);
    auto cuda_buf_holder = paddle::memory::Alloc(cuda_place, size);
    REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
    REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
    for (int i = 0; i < rank; ++i) {
      cpu_buf[i] = in_stride[i];
      cpu_buf[rank + i] = out_stride[i];
      cpu_buf[2 * rank + i] = axis[i];
    }
    paddle::memory::Copy(
        cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
    REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
    REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
    REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

    const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
    const int MAX_GRID_DIM =
        context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int64_t elements = in.numel();
    int block_size = (elements >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(elements)));
    int grid_size = elements / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
231 232 233 234 235 236 237 238
    TransposeNormalKernel<T>
        <<<grid_size, block_size, 0, context.stream()>>>(in_ptr,
                                                         out_ptr,
                                                         elements,
                                                         in_stride_ptr,
                                                         out_stride_ptr,
                                                         axis_ptr,
                                                         rank);
H
hong 已提交
239 240 241
  }
};

242
// define transpose normal
243 244
#define DEFINE_GPU_TRANS_NORMAL(TYPE)                                         \
  template struct TransposeNormal<paddle::platform::CUDADeviceContext, TYPE>; \
245
  template struct TransposeNormal<phi::GPUContext, TYPE>
246 247 248 249 250 251 252 253 254 255 256

DEFINE_GPU_TRANS_NORMAL(float16);
DEFINE_GPU_TRANS_NORMAL(bfloat16);
DEFINE_GPU_TRANS_NORMAL(float);
DEFINE_GPU_TRANS_NORMAL(double);
DEFINE_GPU_TRANS_NORMAL(int);
DEFINE_GPU_TRANS_NORMAL(int64_t);
DEFINE_GPU_TRANS_NORMAL(bool);
DEFINE_GPU_TRANS_NORMAL(int16_t);
DEFINE_GPU_TRANS_NORMAL(uint8_t);
DEFINE_GPU_TRANS_NORMAL(int8_t);
257 258
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<float>);
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<double>);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

struct TensorSetConstantGPU {
  TensorSetConstantGPU(const paddle::platform::DeviceContext& context,
                       paddle::framework::Tensor* tensor,
                       float value)
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename T>
  void apply() const {
    SetConstant<paddle::platform::CUDADeviceContext, T> functor;
    functor(
        reinterpret_cast<const paddle::platform::CUDADeviceContext&>(context_),
        tensor_,
        static_cast<T>(value_));
  }

  const paddle::platform::DeviceContext& context_;
  paddle::framework::Tensor* tensor_;
  float value_;
};

template <>
void set_constant_with_place<paddle::platform::CUDAPlace>(
    const paddle::platform::DeviceContext& context,
    paddle::framework::Tensor* tensor,
    float value) {
285 286
  phi::VisitDataType(tensor->dtype(),
                     TensorSetConstantGPU(context, tensor, value));
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
}

template <typename T>
__global__ void RowwiseAddKernel(
    const T* a, const T* b, T* c, int width, int num) {
  T tmp = 1.0 / width;
  CUDA_KERNEL_LOOP(i, num) {
    int h = i * tmp;
    int w = i - h * width;
    c[i] = a[i] + b[w];
  }
}

template <typename T>
struct RowwiseAdd<paddle::platform::CUDADeviceContext, T> {
  void operator()(const paddle::platform::CUDADeviceContext& context,
                  const paddle::framework::Tensor& input,
                  const paddle::framework::Tensor& vector,
                  paddle::framework::Tensor* output) {
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto size = input.numel() / in_dims[0];
    PADDLE_ENFORCE_EQ(
        vector.numel(),
        size,
312
        phi::errors::InvalidArgument(
313 314 315 316 317 318 319 320 321 322
            "The input vector size"
            " should be equal to the size of each row of input tensor."
            " Expected vector size=%d, but received %d",
            size,
            vector.numel()));
    const char* in_dims_cstr = in_dims.to_str().c_str();
    const char* out_dims_cstr = out_dims.to_str().c_str();
    PADDLE_ENFORCE_EQ(
        out_dims,
        in_dims,
323
        phi::errors::InvalidArgument(
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            "The output tensor shape should be same as the input tensor"
            " shape. Expected output tensor shape: %s,"
            " but received %s",
            in_dims_cstr,
            out_dims_cstr));
    int blocks = 512;
    int grids = (input.numel() + blocks - 1) / blocks;
    RowwiseAddKernel<T><<<grids, blocks, 0, context.stream()>>>(
        input.data<T>(),
        vector.data<T>(),
        output->data<T>(),
        static_cast<int>(in_dims[1]),
        static_cast<int>(input.numel()));
  }
};

template struct RowwiseAdd<paddle::platform::CUDADeviceContext, float>;
template struct RowwiseAdd<paddle::platform::CUDADeviceContext, double>;
template struct ColwiseSum<paddle::platform::CUDADeviceContext, float>;
template struct ColwiseSum<paddle::platform::CUDADeviceContext, int>;
template struct ColwiseSum<paddle::platform::CUDADeviceContext, int64_t>;
// template struct ColwiseSum<paddle::platform::CUDADeviceContext, double>;
// The ColwiseSum<paddle::platform::CUDADeviceContext, double> failed in debug
// mode,
// and only failed for this case. So reimplemented it.
template <>
void ColwiseSum<paddle::platform::CUDADeviceContext, double>::operator()(
    const paddle::platform::CUDADeviceContext& context,
    const paddle::framework::Tensor& input,
    paddle::framework::Tensor* vector) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    size,
358
                    phi::errors::InvalidArgument(
359 360 361 362 363 364 365 366 367
                        "The size of input vector"
                        " should be equal to the size of input tensor column"
                        " dimension. Expected vector size=%d, but received %d",
                        size,
                        vector->numel()));
  paddle::framework::Tensor one;
  one.mutable_data<double>({in_dims[0]}, context.GetPlace());
  SetConstant<paddle::platform::CUDADeviceContext, double> set;
  set(context, &one, static_cast<double>(1.0));
368
  phi::funcs::GetBlas<paddle::platform::CUDADeviceContext, double>(context)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
      .GEMV(true,
            static_cast<int>(in_dims[0]),
            static_cast<int>(in_dims[1]),
            1.0,
            input.data<double>(),
            one.data<double>(),
            0.0,
            vector->data<double>());
}

template struct RowwiseSum<paddle::platform::CUDADeviceContext, float>;
// template struct RowwiseSum<paddle::platform::CUDADeviceContext, double>;
// TODO(zcd): Following ColwiseSum format, need to confirm.
// The RowwiseSum<paddle::platform::CUDADeviceContext, double> failed in debug
// mode,
// and only failed for this case. So reimplemented it.
template <>
void RowwiseSum<paddle::platform::CUDADeviceContext, double>::operator()(
    const paddle::platform::CUDADeviceContext& context,
    const paddle::framework::Tensor& input,
    paddle::framework::Tensor* vector) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    in_dims[0],
394
                    phi::errors::InvalidArgument(
395 396 397 398 399 400 401 402 403
                        "The size of input vector"
                        " should be equal to the size of input tensor row"
                        " dimension. Expected vector size=%d, but received %d",
                        in_dims[0],
                        vector->numel()));
  paddle::framework::Tensor one;
  one.mutable_data<double>({size}, context.GetPlace());
  SetConstant<paddle::platform::CUDADeviceContext, double> set;
  set(context, &one, static_cast<double>(1.0));
404
  phi::funcs::GetBlas<paddle::platform::CUDADeviceContext, double>(context)
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
      .GEMV(true,
            static_cast<int>(in_dims[1]),
            static_cast<int>(in_dims[0]),
            1.0,
            one.data<double>(),
            input.data<double>(),
            0.0,
            vector->data<double>());
}

template struct RowwiseMean<paddle::platform::CUDADeviceContext, float>;
template struct RowwiseMean<paddle::platform::CUDADeviceContext, double>;

template <typename T>
struct ElementwiseAddTo<paddle::platform::CUDADeviceContext, T> {
  void operator()(paddle::platform::CUDADeviceContext* ctx,
                  const paddle::framework::Tensor& src,
                  paddle::framework::Tensor* dst) {
    auto in = paddle::framework::EigenVector<T>::Flatten(src);
    auto out = paddle::framework::EigenVector<T>::Flatten(*dst);
    auto& place = *(ctx->eigen_device());
    out.device(place) = out + in;
  }
};

template struct ElementwiseAddTo<paddle::platform::CUDADeviceContext,
431
                                 phi::dtype::float16>;
432
template struct ElementwiseAddTo<paddle::platform::CUDADeviceContext,
433
                                 phi::dtype::bfloat16>;
434 435

}  // namespace funcs
436
}  // namespace phi