test_multiclass_nms_op.py 7.6 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import numpy as np
import copy
17
from op_test import OpTest
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58


def iou(box_a, box_b):
    """Apply intersection-over-union overlap between box_a and box_b
    """
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

    area_a = (ymax_a - ymin_a) * (xmax_a - xmin_a)
    area_b = (ymax_b - ymin_b) * (xmax_b - xmin_b)
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

    inter_area = max(xb - xa, 0.0) * max(yb - ya, 0.0)

    box_a_area = (box_a[2] - box_a[0]) * (box_a[3] - box_a[1])
    box_b_area = (box_b[2] - box_b[0]) * (box_b[3] - box_b[1])

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0):
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
59 60 61 62 63 64
        score_threshold: (float) The confidence thresh for filtering low
            confidence boxes.
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        top_k: (int) The maximum number of box preds to consider.
        eta: (float) The parameter for adaptive NMS.
65 66 67 68 69 70 71 72 73
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.argwhere(all_scores > score_threshold)
    selected_indices = selected_indices.flatten()
    all_scores = all_scores[selected_indices]

74
    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
75
    sorted_scores = all_scores[sorted_indices]
D
dangqingqing 已提交
76
    if top_k > -1 and top_k < sorted_indices.shape[0]:
77 78 79 80 81 82 83 84 85 86 87 88
        sorted_indices = sorted_indices[:top_k]
        sorted_scores = sorted_scores[:top_k]

    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
                overlap = iou(boxes[idx], boxes[kept_idx])
D
dangqingqing 已提交
89
                keep = True if overlap <= adaptive_threshold else False
90 91 92 93 94 95 96 97 98 99 100 101 102 103
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
                   nms_top_k, keep_top_k):
    class_num = scores.shape[0]
    priorbox_num = scores.shape[1]

104
    selected_indices = {}
105 106 107 108 109
    num_det = 0
    for c in range(class_num):
        if c == background: continue
        indices = nms(boxes, scores[c], score_threshold, nms_threshold,
                      nms_top_k)
110
        selected_indices[c] = indices
111 112 113 114
        num_det += len(indices)

    if keep_top_k > -1 and num_det > keep_top_k:
        score_index = []
115
        for c, indices in selected_indices.items():
116 117
            for idx in indices:
                score_index.append((scores[c][idx], c, idx))
118 119 120 121

        sorted_score_index = sorted(
            score_index, key=lambda tup: tup[0], reverse=True)
        sorted_score_index = sorted_score_index[:keep_top_k]
122 123 124 125
        selected_indices = {}

        for _, c, _ in sorted_score_index:
            selected_indices[c] = []
126
        for s, c, idx in sorted_score_index:
127 128
            selected_indices[c].append(idx)
        num_det = keep_top_k
129

130
    return selected_indices, num_det
131 132 133 134 135 136 137


def batched_multiclass_nms(boxes, scores, background, score_threshold,
                           nms_threshold, nms_top_k, keep_top_k):
    batch_size = scores.shape[0]

    det_outs = []
138
    lod = []
139
    for n in range(batch_size):
140
        nmsed_outs, nmsed_num = multiclass_nms(boxes[n], scores[n], background,
141 142
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
143
        lod.append(nmsed_num)
144 145
        if nmsed_num == 0: continue

146
        for c, indices in nmsed_outs.items():
147
            for idx in indices:
148
                xmin, ymin, xmax, ymax = boxes[n][idx][:]
149 150
                det_outs.append([c, scores[n][c][idx], xmin, ymin, xmax, ymax])

151 152 153 154
    return det_outs, lod


class TestMulticlassNMSOp(OpTest):
155 156 157
    def set_argument(self):
        self.score_threshold = 0.01

158
    def setUp(self):
159
        self.set_argument()
160
        N = 7
161
        M = 1200
162 163
        C = 21
        BOX_SIZE = 4
164

165 166 167 168
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
169
        score_threshold = self.score_threshold
170

D
dangqingqing 已提交
171 172 173 174 175 176 177 178 179 180 181
        scores = np.random.random((N * M, C)).astype('float32')

        def softmax(x):
            shiftx = x - np.max(x).clip(-64.)
            exps = np.exp(shiftx)
            return exps / np.sum(exps)

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

182 183 184
        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
185 186 187 188

        nmsed_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                                 score_threshold, nms_threshold,
                                                 nms_top_k, keep_top_k)
189
        nmsed_outs = [-1] if not nmsed_outs else nmsed_outs
D
dangqingqing 已提交
190 191 192
        nmsed_outs = np.array(nmsed_outs).astype('float32')

        self.op_type = 'multiclass_nms'
D
dangqingqing 已提交
193
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
194
        self.outputs = {'Out': (nmsed_outs, [lod])}
D
dangqingqing 已提交
195 196 197 198 199 200 201 202
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
        }
203 204 205 206 207

    def test_check_output(self):
        self.check_output()


208 209 210 211 212 213 214
class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0 
        self.score_threshold = 2.0


215 216 217 218 219 220 221 222 223 224 225 226
class TestIOU(unittest.TestCase):
    def test_iou(self):
        box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
        box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')

        expt_output = np.array([2.0 / 16.0]).astype('float32')
        calc_output = np.array([iou(box1, box2)]).astype('float32')
        self.assertTrue(np.allclose(calc_output, expt_output))


if __name__ == '__main__':
    unittest.main()