manipulation.py 48.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core
W
Wilber 已提交
18 19 20
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
# TODO: define functions to manipulate a tensor  
25
from ..fluid.layers import cast  #DEFINE_ALIAS
26
from ..fluid.layers import expand_as  #DEFINE_ALIAS
27 28 29 30 31 32
from ..fluid.layers import slice  #DEFINE_ALIAS
from ..fluid.layers import strided_slice  #DEFINE_ALIAS
from ..fluid.layers import transpose  #DEFINE_ALIAS
from ..fluid.layers import unique  #DEFINE_ALIAS
from ..fluid.layers import unstack  #DEFINE_ALIAS

33 34 35 36
from ..fluid.layers import scatter_nd_add  #DEFINE_ALIAS
from ..fluid.layers import scatter_nd  #DEFINE_ALIAS
from ..fluid.layers import shard_index  #DEFINE_ALIAS
from ..fluid.layers import unique_with_counts  #DEFINE_ALIAS
L
Leo Chen 已提交
37
from ..fluid import layers
38
import paddle
39

W
Wilber 已提交
40
__all__ = [
41 42 43
    'cast',
    'concat',
    'expand',
L
lilong12 已提交
44
    'broadcast_to',
45 46 47 48 49 50 51 52 53 54 55 56
    'expand_as',
    'flatten',
    'gather',
    'gather_nd',
    'reshape',
    'reverse',
    'scatter',
    'scatter_nd_add',
    'scatter_nd',
    'shard_index',
    'slice',
    'split',
57
    'chunk'
58 59 60 61 62 63 64 65 66 67 68
    'squeeze',
    'stack',
    'strided_slice',
    'transpose',
    'unique',
    'unique_with_counts',
    'unsqueeze',
    'unstack',
    'flip',
    'unbind',
    'roll',
L
lilong12 已提交
69
    'tile',
W
Wilber 已提交
70 71 72
]


73 74 75
def concat(x, axis=0, name=None):
    """
	:alias_main: paddle.concat
76
	:alias: paddle.tensor.concat, paddle.tensor.manipulation.concat
77 78 79 80

    This OP concatenates the input along the axis.

    Args:
81 82
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16, 
            float32, float64, int32, int64. All the Tensors in ``x`` must have same data type.
83 84 85 86
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
87 88 89 90
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Raises:
91 92
        TypeError: ``x`` must be list or tuple.
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32 and int64. 
93
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
94 95 96
        TypeError: All the Tensors in ``x`` must have the same data type.

    Returns:
97
        Tensor: A Tensor with the same data type as ``x``.
98 99 100 101 102 103 104

    Examples:
        .. code-block:: python
            
            import paddle
            import numpy as np
            
105
            paddle.disable_static()  # Now we are in imperative mode
106 107 108 109 110 111
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
W
wangchaochaohu 已提交
112 113 114
            x1 = paddle.to_tensor(in1)
            x2 = paddle.to_tensor(in2)
            x3 = paddle.to_tensor(in3)
115 116 117
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
118 119 120
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
121 122 123 124 125 126 127 128 129
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
130
    check_type(x, 'x', (list, tuple), 'concat')
131 132 133
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


Y
yaoxuefeng 已提交
134
def flip(x, axis, name=None):
W
Wilber 已提交
135
    """
136 137
	:alias_main: paddle.flip
	:alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip
S
swtkiwi 已提交
138

W
Wilber 已提交
139

Y
yaoxuefeng 已提交
140
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
141 142

    Args:
Y
yaoxuefeng 已提交
143
        x (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
144
            should be float32, float64, int32, int64, bool.
Y
yaoxuefeng 已提交
145
        axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
146 147 148 149
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
150
        Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
151 152 153 154 155 156

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
157

158
          paddle.disable_static()
Y
yaoxuefeng 已提交
159 160 161 162

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
163
          img = paddle.to_variable(x)
Y
yaoxuefeng 已提交
164 165 166
          out = paddle.flip(img, [0,1])

          print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
W
Wilber 已提交
167 168
    """
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
169 170
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
171 172 173
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
174
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
175 176 177 178 179 180 181
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
182
        inputs={"X": x},
W
Wilber 已提交
183
        outputs={"Out": out},
Y
yaoxuefeng 已提交
184
        attrs={"axis": axis})
W
Wilber 已提交
185
    return out
186 187


Y
yaoxuefeng 已提交
188 189 190
reverse = flip  #DEFINE_ALIAS


191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
def flatten(x, start_axis=0, stop_axis=-1, name=None):
    """
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of number of dimentions >= axis. A tensor with data type float32,
                      float64, int8, int32, int64.
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
        Variable: A tensor with the contents of the input tensor, with input \
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
        ValueError: If x is not a Variable.
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

249
            paddle.disable_static()
250 251 252 253 254

            image_shape=(2, 3, 4, 4)
            x = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100.
            x = x.astype('float32')
            
255
            img = paddle.to_variable(x)
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'flatten')
    helper = LayerHelper('flatten', **locals())

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
        dy_out, _ = core.ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
        return dy_out

    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


Y
yaoxuefeng 已提交
299
def roll(x, shifts, axis=None, name=None):
300
    """
301 302
	:alias_main: paddle.roll
	:alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll
S
swtkiwi 已提交
303

Y
yaoxuefeng 已提交
304 305 306
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
307 308 309
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
310
        x (Variable): The x tensor variable as input.
311
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
312 313
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
314 315

    Returns:
Y
yaoxuefeng 已提交
316
        Variable: A Tensor with same data type as `x`.
317 318 319 320 321 322 323 324 325 326

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            data = np.array([[1.0, 2.0, 3.0],
                             [4.0, 5.0, 6.0],
                             [7.0, 8.0, 9.0]])
327 328
            paddle.disable_static()
            x = paddle.to_variable(data)
Y
yaoxuefeng 已提交
329 330 331 332 333 334 335 336 337 338
            out_z1 = paddle.roll(x, shifts=1)
            print(out_z1.numpy())
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
            print(out_z2.numpy())
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
339 340
    """
    helper = LayerHelper("roll", **locals())
Y
yaoxuefeng 已提交
341
    origin_shape = x.shape
342 343
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))

    if axis:
        check_type(axis, 'axis', (list, tuple), 'roll')
357 358 359
    check_type(shifts, 'shifts', (list, tuple), 'roll')

    if in_dygraph_mode():
Y
yaoxuefeng 已提交
360 361 362 363
        if axis is None:
            x = core.ops.reshape(x, 'shape', [-1, 1])
            axis = [0]
        out = core.ops.roll(x, 'axis', axis, 'shifts', shifts)
364 365
        return core.ops.reshape(out, 'shape', origin_shape)

Y
yaoxuefeng 已提交
366
    out = helper.create_variable_for_type_inference(x.dtype)
367

Y
yaoxuefeng 已提交
368 369 370
    if axis is None:
        x = reshape(x, shape=[-1, 1])
        axis = [0]
371 372 373

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
374
        inputs={'X': x},
375
        outputs={'Out': out},
Y
yaoxuefeng 已提交
376
        attrs={'axis': axis,
377
               'shifts': shifts})
378
    out = layers.reshape(out, shape=origin_shape, inplace=True)
379
    return out
380 381


L
Leo Chen 已提交
382
def stack(x, axis=0, name=None):
383
    """
384
	:alias_main: paddle.stack
L
Leo Chen 已提交
385
	:alias: paddle.stack, paddle.tensor.stack, paddle.tensor.manipulation.stack
S
swtkiwi 已提交
386

L
Leo Chen 已提交
387 388 389 390 391 392 393
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
429
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
430 431 432 433 434 435 436 437

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
438 439
        x (Tensor|list[Tensor]): Input ``x`` can be a single tensor, or a ``list`` of tensors.
                                     If ``x`` is a ``list``, the Tensors in ``x``
440
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
441 442 443 444 445
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
446
    Returns:
L
Leo Chen 已提交
447
        Tensor: The stacked tensor with same data type as input.
448 449 450

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
451

452
            import paddle
L
Leo Chen 已提交
453
            import numpy as np
454 455 456 457 458

            data1 = np.array([[1.0, 2.0]])
            data2 = np.array([[3.0, 4.0]])
            data3 = np.array([[5.0, 6.0]])

459 460 461 462
            paddle.disable_static()
            x1 = paddle.to_variable(data1)
            x2 = paddle.to_variable(data2)
            x3 = paddle.to_variable(data3)
L
Leo Chen 已提交
463 464 465 466 467 468 469 470 471

            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
            print(out.numpy())
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
472 473


474
def split(x, num_or_sections, axis=0, name=None):
475 476
    """
    Split the input tensor into multiple sub-Tensors.
477
    
478
    Args:
479 480 481 482 483 484 485 486 487 488 489
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
490
    Returns:
491
        list(Tensor): The list of segmented Tensors.
492
    Raises:
493 494 495
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: ``num_or_sections`` is not int, list or tuple.
        TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
496 497
    Example:
        .. code-block:: python
498
            
499 500 501
            import numpy as np
            import paddle
            
502
            paddle.disable_static()
503 504
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
W
wangchaochaohu 已提交
505
            x = paddle.to_tensor(x_np)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

            out0, out1, out22 = paddle.split(x, num_or_sections=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
528
    """
529 530
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
531 532


L
Leo Chen 已提交
533
def squeeze(x, axis=None, name=None):
534
    """
535
	:alias_main: paddle.squeeze
L
Leo Chen 已提交
536
	:alias: paddle.squeeze, paddle.tensor.squeeze, paddle.tensor.manipulation.squeeze
S
swtkiwi 已提交
537

L
Leo Chen 已提交
538
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
539

L
Leo Chen 已提交
540 541 542
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
543 544 545 546 547 548

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
549 550
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
551
          Output:
L
Leo Chen 已提交
552
            out.shape = [3, 5]
553 554 555 556

        Case2:

          Input:
L
Leo Chen 已提交
557 558 559 560 561 562 563 564 565 566
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
567
          Output:
L
Leo Chen 已提交
568
            out.shape = [3, 5]
569

L
Leo Chen 已提交
570
        Case4:
571 572

          Input:
L
Leo Chen 已提交
573 574
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
575
          Output:
L
Leo Chen 已提交
576
            out.shape = [1, 3, 5]
577 578

    Args:
579
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
L
Leo Chen 已提交
580
        axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None.
581 582 583
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
584 585 586
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
587
        Tensor: Squeezed Tensor with the same data type as input Tensor.
588 589 590

    Examples:
        .. code-block:: python
591

592 593
            import paddle

594
            paddle.disable_static()
L
Leo Chen 已提交
595 596 597 598
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
            # output.shape [5, 10]
599 600

    """
L
Leo Chen 已提交
601 602 603 604 605 606
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
607

L
Leo Chen 已提交
608
    return layers.squeeze(x, axis, name)
609 610


611
def unsqueeze(x, axis, name=None):
612
    """
613
	:alias_main: paddle.unsqueeze
614
	:alias: paddle.unsqueeze, paddle.tensor.unsqueeze, paddle.tensor.manipulation.unsqueeze
615

616 617 618
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
619 620

    Args:
621 622 623 624 625 626
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
627 628

    Returns:
629
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
630 631 632

    Examples:
        .. code-block:: python
633

634 635
            import paddle

636
            paddle.disable_static()
637 638 639 640 641 642 643 644
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
645

646 647 648 649
            axis = paddle.fluid.dygraph.to_variable([0, 1, 2])
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
            
650
    """
651 652
    if isinstance(axis, int):
        axis = [axis]
653

654
    return layers.unsqueeze(x, axis, name)
655 656


657
def gather(x, index, axis=None, name=None):
658
    """
S
swtkiwi 已提交
659

660 661
    **Gather Layer**

662 663
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
664 665 666 667 668 669

    .. code-block:: text


                Given:

670
                x = [[1, 2],
671 672 673
                     [3, 4],
                     [5, 6]]

674 675
                index = [1, 2]
                axis=[0]
676 677 678

                Then:

679
                out = [[3, 4],
680 681
                       [5, 6]]
    Args:
682
        x (Tensor): The source input tensor with rank>=1. Supported data type is
683 684
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
685
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
686
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
687 688
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
689 690

    Returns:
691 692 693 694 695 696
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
    Raises:
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must to be one of float16, float32, float64, int32, int64, uint8.
        TypeError: ``index`` must be a Tensor and the data type of ``index`` must be int32 or int64.
        TypeError: ``axis`` must be a Tensor or int and the data type of ``index`` must be int32 or int64 when it's a Tensor.
697 698 699 700 701 702 703 704

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

705 706 707
            paddle.disable_static()
            input_1 = np.array([[1,2],[3,4],[5,6]])
            index_1 = np.array([0,1])
708 709
            input = paddle.to_tensor(input_1)
            index = paddle.to_tensor(index_1)
710 711
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
712
    """
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    if axis is None:
        axis = 0
    axis_tensor = axis
    if not isinstance(axis, Variable):
        axis_tensor = fill_constant(shape=[1], dtype='int64', value=axis)
    if in_dygraph_mode():
        return core.ops.gather(x, index, axis_tensor)

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
    else:
        check_type(axis, 'axis', (int), 'gather')

730 731 732 733 734
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather",
735 736 737 738
        inputs={"X": x,
                "Index": index,
                "Axis": axis_tensor},
        outputs={"Out": out})
739
    return out
myq406450149's avatar
myq406450149 已提交
740 741 742 743


def unbind(input, axis=0):
    """
744 745
	:alias_main: paddle.tensor.unbind
	:alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind
S
swtkiwi 已提交
746

myq406450149's avatar
myq406450149 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
       
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
797 798


S
ShenLiang 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
          If True, use the overwrite mode to update the output of the same index,
	      if False, use the accumulate mode to update the output of the same index.Default value is True.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle
            import numpy as np
            paddle.disable_static()

            x_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            updates_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)
            
            x = paddle.to_tensor(x_data)
            index = paddle.to_tensor(index_data)
            updates = paddle.to_tensor(updates_data)
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
    if in_dygraph_mode():
        return core.ops.scatter(x, index, updates, 'overwrite', overwrite)

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'scatter')
    check_type(overwrite, 'overwrite', bool, 'scatter')
    helper = LayerHelper('scatter', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": x,
                "Ids": index,
                "Updates": updates},
        attrs={'overwrite': overwrite},
        outputs={"Out": out})
    return out


893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
    Raises:
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: ``chunks`` is not int.
        TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            paddle.disable_static()
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
920
            x = paddle.to_tensor(x_np)
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939

            out0, out1, out22 = paddle.chunk(x, chunks=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
940 941
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
942 943

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
944
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
945 946 947

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
948
    Args:
L
lilong12 已提交
949 950 951 952 953
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
        repeat_times (Tensor|tuple|list): The number of repeating times. If repeat_times is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
954
    Returns:
L
lilong12 已提交
955 956
        N-D Tensor. The data type is the same as ``x``.

L
lilong12 已提交
957 958
    Examples:
        .. code-block:: python
L
lilong12 已提交
959

L
lilong12 已提交
960 961
            import paddle
            import numpy as np
L
lilong12 已提交
962

L
lilong12 已提交
963
            paddle.disable_static()
L
lilong12 已提交
964
            np_data = np.array([1, 2, 3]).astype('int32')
965
            data = paddle.to_tensor(np_data)
L
lilong12 已提交
966
            out = paddle.tile(data, repeat_times=[2, 1])
967
            np_out = out.numpy()
L
lilong12 已提交
968
            # [[1, 2, 3], [1, 2, 3]]
L
lilong12 已提交
969 970

            out = paddle.tile(data, repeat_times=[2, 2])
971
            np_out = out.numpy()
L
lilong12 已提交
972 973
            # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]

L
lilong12 已提交
974
            np_repeat_times = np.array([2, 1]).astype("int32")
975
            repeat_times = paddle.to_tensor(np_repeat_times)
L
lilong12 已提交
976
            out = paddle.tile(data, repeat_times=repeat_times)
977
            np_out = out.numpy()
L
lilong12 已提交
978 979 980 981 982
            # [[1, 2, 3], [1, 2, 3]]
    """
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
L
lilong12 已提交
983
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
984 985
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
986
            "must set its stop_gradient to be True by "
987 988 989 990
            "some_var.stop_gradient == True supporting some_var is the input.")

    if in_dygraph_mode():
        return core.ops.tile(x, 'repeat_times', repeat_times)
L
lilong12 已提交
991

992
    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
993

L
lilong12 已提交
994 995 996
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
997 998 999 1000 1001 1002 1003 1004
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
1005
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
1006 1007 1008 1009 1010
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
1011
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
1023 1024


L
lilong12 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
1034
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            paddle.disable_static()

1048 1049 1050 1051
            np_data_x = np.array([1, 2, 3]).astype('int32')
            np_data_y = np.array([[1, 2, 3], [4, 5, 6]]).astype('int32')
            data_x = paddle.to_tensor(np_data_x)
            data_y = paddle.to_tensor(np_data_y)
L
lilong12 已提交
1052
            out = paddle.expand_as(data_x, data_y)
1053
            np_out = out.numpy()
L
lilong12 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
            # [[1, 2, 3], [1, 2, 3]]
    """
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
    inputs = {"X": [x], "target_tensor": [y]}

1068 1069 1070 1071
    if in_dygraph_mode():
        return core.ops.expand_as_v2(x, y)

    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
1072 1073 1074 1075 1076 1077
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='expand_as_v2', inputs=inputs, outputs={'Out': out})
    return out


1078 1079 1080 1081 1082
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
1083
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
1084 1085 1086


    Args:
L
lilong12 已提交
1087 1088 1089 1090
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
1091 1092 1093
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
1094
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
1095 1096 1097 1098 1099 1100 1101

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

L
lilong12 已提交
1102
            paddle.disable_static()
1103 1104
            np_data = np.array([1, 2, 3]).astype('int32')
            data = paddle.to_tensor(np_data)
L
lilong12 已提交
1105
            out = paddle.expand(data, shape=[2, 3])
1106
            out = out.numpy()
1107 1108 1109 1110 1111
            # [[1, 2, 3], [1, 2, 3]]
    """
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
1112 1113 1114 1115

    inputs = {"X": [x]}
    attrs = {}
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
1116 1117
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
1118
                         "some_var.stop_gradient = True, supporting "
1119 1120
                         "some_var as the input.")

1121 1122 1123 1124
    if in_dygraph_mode():
        return core.ops.expand_v2(x, 'shape', shape)

    helper = LayerHelper('expand', **locals())
1125 1126 1127 1128 1129 1130 1131 1132 1133

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
1134
                    "All elements in shape of expand must be positive or -1.")
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
1151 1152 1153


broadcast_to = expand
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231


def reshape(x, shape, name=None):
    """
    :alias_main: paddle.reshape
	:alias: paddle.reshape,paddle.tensor.reshape,paddle.tensor.manipulation.reshape

    This operator changes the shape of ``x`` without changing its data.

    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
        x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Raises:
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            paddle.disable_static()

            data = np.random.random([2, 4, 6]).astype("float32")
            x = paddle.to_tensor(data)

            positive_four = paddle.fill_constant([1], "int32", 4)

            out_1 = paddle.reshape(x, [-1, 0, 3, 2])
            # the shape of out_1 is [2,4,3,2].

            out_2 = paddle.reshape(x, shape=[positive_four, 12])
            # the shape of out_2 is [4, 12].

            shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32"))
            out_3 = paddle.reshape(x, shape=shape_tensor)
            # the shape of out_2 is [8, 6].
    """
    return paddle.fluid.layers.reshape(x=x, shape=shape, name=name)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252


def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
1253 1254 1255 1256 1257 1258 1259
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
1260 1261 1262 1263

            * Case 1:
                index = [[1]]

1264 1265
                gather_nd(x, index)
                         = [x[1, :, :]]
1266 1267 1268 1269 1270 1271 1272
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

1273 1274
                gather_nd(x, index)
                         = [x[0, 2, :]]
1275 1276 1277 1278 1279
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

1280 1281
                gather_nd(x, index)
                         = [x[1, 2, 3]]
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Raises:
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of float32, float64, int32 and int64.
        TypeError: ``index`` must be a Tensor and the data type of ``index`` must be one of int32 and int64.

    Examples:

        .. code-block:: python
1301
            
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
            import paddle
            import numpy as np
            
            paddle.disable_static()
            np_x = np.array([[[1, 2], [3, 4], [5, 6]],
                             [[7, 8], [9, 10], [11, 12]]])
            np_index = [[0, 1]]
            x = paddle.to_tensor(np_x)
            index = paddle.to_tensor(np_index)
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """

    return paddle.fluid.layers.gather_nd(input=x, index=index, name=name)