test_image_classification.py 10.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
import paddle.fluid as fluid
17
import contextlib
18 19
import math
import sys
20 21
import numpy
import unittest
武毅 已提交
22
import os
23
import tempfile
Q
Qiao Longfei 已提交
24

P
pangyoki 已提交
25 26
paddle.enable_static()

Q
Qiao Longfei 已提交
27

28
def resnet_cifar10(input, depth=32):
29

30 31 32 33 34 35 36
    def conv_bn_layer(input,
                      ch_out,
                      filter_size,
                      stride,
                      padding,
                      act='relu',
                      bias_attr=False):
37 38 39 40 41 42 43
        tmp = fluid.layers.conv2d(input=input,
                                  filter_size=filter_size,
                                  num_filters=ch_out,
                                  stride=stride,
                                  padding=padding,
                                  act=None,
                                  bias_attr=bias_attr)
44
        return fluid.layers.batch_norm(input=tmp, act=act)
Q
Qiao Longfei 已提交
45

46
    def shortcut(input, ch_in, ch_out, stride):
Q
Qiao Longfei 已提交
47
        if ch_in != ch_out:
48
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
Q
Qiao Longfei 已提交
49 50 51
        else:
            return input

Q
Qiao Longfei 已提交
52 53
    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
54
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
55
        short = shortcut(input, ch_in, ch_out, stride)
56
        return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
Q
Qiao Longfei 已提交
57

58 59
    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
Q
Qiao Longfei 已提交
60
        for i in range(1, count):
61
            tmp = block_func(tmp, ch_out, ch_out, 1)
Q
Qiao Longfei 已提交
62 63 64
        return tmp

    assert (depth - 2) % 6 == 0
M
minqiyang 已提交
65
    n = (depth - 2) // 6
66 67 68 69 70
    conv1 = conv_bn_layer(input=input,
                          ch_out=16,
                          filter_size=3,
                          stride=1,
                          padding=1)
Q
Qiao Longfei 已提交
71 72 73
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
74 75 76 77
    pool = fluid.layers.pool2d(input=res3,
                               pool_size=8,
                               pool_type='avg',
                               pool_stride=1)
Q
Qiao Longfei 已提交
78 79 80
    return pool


81
def vgg16_bn_drop(input):
82

Q
Qiao Longfei 已提交
83
    def conv_block(input, num_filter, groups, dropouts):
84 85 86 87 88 89 90 91 92
        return fluid.nets.img_conv_group(input=input,
                                         pool_size=2,
                                         pool_stride=2,
                                         conv_num_filter=[num_filter] * groups,
                                         conv_filter_size=3,
                                         conv_act='relu',
                                         conv_with_batchnorm=True,
                                         conv_batchnorm_drop_rate=dropouts,
                                         pool_type='max')
Q
Qiao Longfei 已提交
93

94 95 96 97 98
    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
99

100
    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
101
    fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
102
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
103
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
104
    fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
Q
Qiao Longfei 已提交
105 106 107
    return fc2


武毅 已提交
108
def train(net_type, use_cuda, save_dirname, is_local):
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    classdim = 10
    data_shape = [3, 32, 32]

    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if net_type == "vgg":
        print("train vgg net")
        net = vgg16_bn_drop(images)
    elif net_type == "resnet":
        print("train resnet")
        net = resnet_cifar10(images, 32)
    else:
        raise ValueError("%s network is not supported" % net_type)

    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
126
    avg_cost = paddle.mean(cost)
127 128
    acc = fluid.layers.accuracy(input=predict, label=label)

129
    # Test program
130
    test_program = fluid.default_main_program().clone(for_test=True)
131 132

    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
133
    optimizer.minimize(avg_cost)
134 135 136 137

    BATCH_SIZE = 128
    PASS_NUM = 1

138 139 140
    train_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.cifar.train10(), buf_size=128 * 10),
                                batch_size=BATCH_SIZE)
141

142 143
    test_reader = paddle.batch(paddle.dataset.cifar.test10(),
                               batch_size=BATCH_SIZE)
144

145 146 147
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
武毅 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        loss = 0.0
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                exe.run(main_program, feed=feeder.feed(data))

                if (batch_id % 10) == 0:
                    acc_list = []
                    avg_loss_list = []
                    for tid, test_data in enumerate(test_reader()):
                        loss_t, acc_t = exe.run(program=test_program,
                                                feed=feeder.feed(test_data),
                                                fetch_list=[avg_cost, acc])
                        if math.isnan(float(loss_t)):
                            sys.exit("got NaN loss, training failed.")
                        acc_list.append(float(acc_t))
                        avg_loss_list.append(float(loss_t))
                        break  # Use 1 segment for speeding up CI

                    acc_value = numpy.array(acc_list).mean()
                    avg_loss_value = numpy.array(avg_loss_list).mean()

172
                    print(
173 174 175
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
                        .format(pass_id, batch_id + 1, float(avg_loss_value),
                                float(acc_value)))
武毅 已提交
176 177 178 179 180 181 182 183 184

                    if acc_value > 0.01:  # Low threshold for speeding up CI
                        fluid.io.save_inference_model(save_dirname, ["pixel"],
                                                      [predict], exe)
                        return

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
185 186
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
187 188 189 190
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
191
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
192
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
193 194
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
195
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
196
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
197 198 199 200 201 202 203 204
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
205 206 207 208 209 210 211 212 213


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

214 215 216
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
217
        # the feed_target_names (the names of variables that will be fed
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
233

234
        print("infer results: ", results[0])
235

236
        fluid.io.save_inference_model(save_dirname, feed_target_names,
237
                                      fetch_targets, exe, inference_program)
238

239

武毅 已提交
240
def main(net_type, use_cuda, is_local=True):
241 242 243 244
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
245 246 247
    temp_dir = tempfile.TemporaryDirectory()
    save_dirname = os.path.join(
        temp_dir.name, "image_classification_" + net_type + ".inference.model")
248

武毅 已提交
249
    train(net_type, use_cuda, save_dirname, is_local)
250
    infer(use_cuda, save_dirname)
251
    temp_dir.cleanup()
252 253 254


class TestImageClassification(unittest.TestCase):
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    def test_vgg_cuda(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=True)

    def test_resnet_cuda(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=True)

    def test_vgg_cpu(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=False)

    def test_resnet_cpu(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()