notest_understand_sentiment.py 14.2 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import unittest
16
import paddle.fluid as fluid
17
import paddle
18
import contextlib
19
import math
20
import numpy as np
21
import sys
武毅 已提交
22
import os
23 24


25 26 27 28 29
def convolution_net(data,
                    label,
                    input_dim,
                    class_dim=2,
                    emb_dim=32,
30
                    hid_dim=32):
31 32 33 34 35 36 37 38 39 40 41 42 43
    emb = fluid.layers.embedding(input=data,
                                 size=[input_dim, emb_dim],
                                 is_sparse=True)
    conv_3 = fluid.nets.sequence_conv_pool(input=emb,
                                           num_filters=hid_dim,
                                           filter_size=3,
                                           act="tanh",
                                           pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(input=emb,
                                           num_filters=hid_dim,
                                           filter_size=4,
                                           act="tanh",
                                           pool_type="sqrt")
44 45 46 47
    prediction = fluid.layers.fc(input=[conv_3, conv_4],
                                 size=class_dim,
                                 act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
48
    avg_cost = paddle.mean(cost)
49
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
50
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
51 52


53 54 55 56 57
def dyn_rnn_lstm(data,
                 label,
                 input_dim,
                 class_dim=2,
                 emb_dim=32,
Y
Yu Yang 已提交
58
                 lstm_size=128):
59 60 61
    emb = fluid.layers.embedding(input=data,
                                 size=[input_dim, emb_dim],
                                 is_sparse=True)
Y
Yu Yang 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
    sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(ipt, hidden, size):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            return gate0 + gate1

75 76 77 78 79 80 81 82
        forget_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        input_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        output_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        cell_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
Y
Yu Yang 已提交
83 84 85 86 87 88 89 90 91 92

        cell = forget_gate * prev_cell + input_gate * cell_gate
        hidden = output_gate * fluid.layers.tanh(x=cell)
        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_last_step(rnn())
    prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
93
    avg_cost = paddle.mean(cost)
Y
Yu Yang 已提交
94 95 96 97
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return avg_cost, accuracy, prediction


Y
Yu Yang 已提交
98 99 100
def stacked_lstm_net(data,
                     label,
                     input_dim,
Q
QI JUN 已提交
101 102 103 104 105 106
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    assert stacked_num % 2 == 1

107 108 109
    emb = fluid.layers.embedding(input=data,
                                 size=[input_dim, emb_dim],
                                 is_sparse=True)
Q
QI JUN 已提交
110 111 112
    # add bias attr

    # TODO(qijun) linear act
113 114
    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
Q
QI JUN 已提交
115 116 117 118

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
119
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
120 121 122
        lstm, cell = fluid.layers.dynamic_lstm(input=fc,
                                               size=hid_dim,
                                               is_reverse=(i % 2) == 0)
Q
QI JUN 已提交
123 124
        inputs = [fc, lstm]

125 126
    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
Q
QI JUN 已提交
127

128 129 130 131
    prediction = fluid.layers.fc(input=[fc_last, lstm_last],
                                 size=class_dim,
                                 act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
132
    avg_cost = paddle.mean(cost)
133
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
134
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
135

136

武毅 已提交
137 138 139 140 141 142
def train(word_dict,
          net_method,
          use_cuda,
          parallel=False,
          save_dirname=None,
          is_local=True):
143 144
    BATCH_SIZE = 128
    PASS_NUM = 5
Q
QI JUN 已提交
145 146 147
    dict_dim = len(word_dict)
    class_dim = 2

148 149 150 151
    data = fluid.layers.data(name="words",
                             shape=[1],
                             dtype="int64",
                             lod_level=1)
Y
Yu Yang 已提交
152
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
153 154

    if not parallel:
155 156 157 158
        cost, acc_out, prediction = net_method(data,
                                               label,
                                               input_dim=dict_dim,
                                               class_dim=class_dim)
159
    else:
X
Xin Pan 已提交
160
        raise NotImplementedError()
161 162

    adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
W
Wu Yi 已提交
163
    adagrad.minimize(cost)
Q
QI JUN 已提交
164

165 166 167
    train_data = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.imdb.train(word_dict), buf_size=1000),
                              batch_size=BATCH_SIZE)
168
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
169
    exe = fluid.Executor(place)
Y
Yu Yang 已提交
170
    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
Q
QI JUN 已提交
171

武毅 已提交
172 173 174
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

175
        for pass_id in range(PASS_NUM):
武毅 已提交
176 177 178 179
            for data in train_data():
                cost_val, acc_val = exe.run(main_program,
                                            feed=feeder.feed(data),
                                            fetch_list=[cost, acc_out])
180
                print("cost=" + str(cost_val) + " acc=" + str(acc_val))
武毅 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193
                if cost_val < 0.4 and acc_val > 0.8:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, ["words"],
                                                      prediction, exe)
                    return
                if math.isnan(float(cost_val)):
                    sys.exit("got NaN loss, training failed.")
        raise AssertionError("Cost is too large for {0}".format(
            net_method.__name__))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
194 195
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
196 197 198 199
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
200
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
201
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
202 203
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
204
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
205
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
206 207 208 209 210 211 212 213
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
214 215


L
Liu Yiqun 已提交
216
def infer(word_dict, use_cuda, save_dirname=None):
217 218 219 220 221 222
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

223 224 225
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
226
        # the feed_target_names (the names of variables that will be fed
227 228 229 230 231 232 233
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict_len = len(word_dict)

K
Kexin Zhao 已提交
234
        # Setup input by creating LoDTensor to represent sequence of words.
235 236
        # Here each word is the basic element of the LoDTensor and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
K
Kexin Zhao 已提交
237
        # look up for the corresponding word vector.
238
        # Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
239 240 241 242
        # which has only one level of detail. Then the created LoDTensor will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
243 244
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[3, 4, 2]]
K
Kexin Zhao 已提交
245 246
        base_shape = [1]
        # The range of random integers is [low, high]
247 248 249 250 251
        tensor_words = fluid.create_random_int_lodtensor(recursive_seq_lens,
                                                         base_shape,
                                                         place,
                                                         low=0,
                                                         high=word_dict_len - 1)
252 253 254 255 256 257 258 259

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == "words"
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_words},
                          fetch_list=fetch_targets,
                          return_numpy=False)
260
        print(results[0].recursive_sequence_lengths())
261
        np_data = np.array(results[0])
262 263
        print("Inference Shape: ", np_data.shape)
        print("Inference results: ", np_data)
264 265


266
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
267 268 269
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

270 271 272 273 274
    train(word_dict,
          net_method,
          use_cuda,
          parallel=parallel,
          save_dirname=save_dirname)
275
    infer(word_dict, use_cuda, save_dirname)
276 277


278
class TestUnderstandSentiment(unittest.TestCase):
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    @classmethod
    def setUpClass(cls):
        cls.word_dict = paddle.dataset.imdb.word_dict()

    @contextlib.contextmanager
    def new_program_scope(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield

    def test_conv_cpu(self):
        with self.new_program_scope():
295 296 297 298
            main(self.word_dict,
                 net_method=convolution_net,
                 use_cuda=False,
                 save_dirname="understand_sentiment_conv.inference.model")
299

300 301
    def test_conv_cpu_parallel(self):
        with self.new_program_scope():
302 303 304 305
            main(self.word_dict,
                 net_method=convolution_net,
                 use_cuda=False,
                 parallel=True)
306 307

    @unittest.skip(reason="make CI faster")
308 309
    def test_stacked_lstm_cpu(self):
        with self.new_program_scope():
310 311 312 313
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
314 315
                save_dirname="understand_sentiment_stacked_lstm.inference.model"
            )
316

317 318
    def test_stacked_lstm_cpu_parallel(self):
        with self.new_program_scope():
319 320 321 322
            main(self.word_dict,
                 net_method=stacked_lstm_net,
                 use_cuda=False,
                 parallel=True)
323

324 325
    def test_conv_gpu(self):
        with self.new_program_scope():
326 327 328 329
            main(self.word_dict,
                 net_method=convolution_net,
                 use_cuda=True,
                 save_dirname="understand_sentiment_conv.inference.model")
330 331 332

    def test_conv_gpu_parallel(self):
        with self.new_program_scope():
333 334 335 336
            main(self.word_dict,
                 net_method=convolution_net,
                 use_cuda=True,
                 parallel=True)
337

338
    @unittest.skip(reason="make CI faster")
339 340
    def test_stacked_lstm_gpu(self):
        with self.new_program_scope():
341 342 343 344
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
345 346
                save_dirname="understand_sentiment_stacked_lstm.inference.model"
            )
Q
QI JUN 已提交
347

348 349
    def test_stacked_lstm_gpu_parallel(self):
        with self.new_program_scope():
350 351 352 353
            main(self.word_dict,
                 net_method=stacked_lstm_net,
                 use_cuda=True,
                 parallel=True)
354

Y
Yu Yang 已提交
355 356 357
    @unittest.skip(reason='make CI faster')
    def test_dynrnn_lstm_gpu(self):
        with self.new_program_scope():
358 359 360 361
            main(self.word_dict,
                 net_method=dyn_rnn_lstm,
                 use_cuda=True,
                 parallel=False)
Y
Yu Yang 已提交
362 363 364

    def test_dynrnn_lstm_gpu_parallel(self):
        with self.new_program_scope():
365 366 367 368
            main(self.word_dict,
                 net_method=dyn_rnn_lstm,
                 use_cuda=True,
                 parallel=True)
Y
Yu Yang 已提交
369

Q
QI JUN 已提交
370 371

if __name__ == '__main__':
372
    unittest.main()