test_optimizer.py 58.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import os
import tempfile
Q
Qiao Longfei 已提交
19 20
import unittest

21
import paddle.fluid as fluid
22 23
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
24
import paddle.fluid.core as core
M
mapingshuo 已提交
25
import paddle.compat as cpt
26
import numpy as np
27
from paddle.fluid.backward import append_backward
L
Leo Chen 已提交
28
from paddle.fluid.framework import Program, program_guard, convert_np_dtype_to_dtype_
C
chentianyu03 已提交
29
from paddle.fluid.framework import _test_eager_guard
L
Leo Chen 已提交
30
import paddle
31 32
from paddle.io import Dataset
import numpy
33

Q
Qiao Longfei 已提交
34 35

class TestOptimizer(unittest.TestCase):
36

Q
Qiao Longfei 已提交
37
    def test_sgd_optimizer(self):
38

Q
qiaolongfei 已提交
39 40 41 42
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
            mul_x = block.create_parameter(dtype="float32",
                                           shape=[5, 10],
                                           lod_level=0,
                                           name="mul.x",
                                           optimize_attr=optimizer_attr)
            mul_y = block.create_var(dtype="float32",
                                     shape=[10, 8],
                                     lod_level=0,
                                     name="mul.y")
            mul_out = block.create_var(dtype="float32",
                                       shape=[5, 8],
                                       lod_level=0,
                                       name="mul.out")
            mean_out = block.create_var(dtype="float32",
                                        shape=[1],
                                        lod_level=0,
                                        name="mean.out")
            block.append_op(type="mul",
                            inputs={
                                "X": mul_x,
                                "Y": mul_y
                            },
                            outputs={"Out": mul_out},
                            attrs={"x_num_col_dims": 1})
            block.append_op(type="mean",
                            inputs={"X": mul_out},
                            outputs={"Out": mean_out})
Q
qiaolongfei 已提交
70 71 72 73 74
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
75 76
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
Q
Qiao Longfei 已提交
77

Q
qiaolongfei 已提交
78 79 80 81
        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])

Q
Qiao Longfei 已提交
82

83
class TestOptimizerBackwardApplygrad(unittest.TestCase):
84

85
    def test_sgd_optimizer(self):
86

87 88 89 90
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            mul_x = block.create_parameter(dtype="float32",
                                           shape=[5, 10],
                                           lod_level=0,
                                           name="mul.x",
                                           optimize_attr=optimizer_attr)
            mul_y = block.create_var(dtype="float32",
                                     shape=[10, 8],
                                     lod_level=0,
                                     name="mul.y")
            mul_out = block.create_var(dtype="float32",
                                       shape=[5, 8],
                                       lod_level=0,
                                       name="mul.out")
            mean_out = block.create_var(dtype="float32",
                                        shape=[1],
                                        lod_level=0,
                                        name="mean.out")
            block.append_op(type="mul",
                            inputs={
                                "X": mul_x,
                                "Y": mul_y
                            },
                            outputs={"Out": mul_out},
                            attrs={"x_num_col_dims": 1})
            block.append_op(type="mean",
                            inputs={"X": mul_out},
                            outputs={"Out": mean_out})
118 119 120 121 122 123 124
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            with framework.program_guard(program, init_program):
                p_g = sgd_optimizer.backward(mean_out)
                opts = sgd_optimizer.apply_gradients(p_g)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
125 126
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
127 128 129 130 131 132

        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])


133
class TestMomentumOptimizer(unittest.TestCase):
134

135
    class MockMomentum(optimizer.MomentumOptimizer):
136

137 138 139 140 141 142
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

143
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
144
        init_program = framework.Program()
145 146
        program = framework.Program()
        block = program.global_block()
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
167
        learning_rate = 0.01
168 169 170 171 172 173 174 175 176
        momentum_optimizer = self.MockMomentum(learning_rate=learning_rate,
                                               momentum=0.2)
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
F
fengjiayi 已提交
177
        params_grads = append_backward(mean_out)
178 179
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
180 181
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
182
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
183
        sgd_op = opts[-1]
184
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
185
        self.assertFalse(sgd_op.attr('use_nesterov'))
186 187 188 189 190 191 192 193 194

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
195 196 197 198
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
199 200 201
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
202

203
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
204
        init_program = framework.Program()
205 206
        program = framework.Program()
        block = program.global_block()
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
234
        learning_rate = 0.01
235 236 237
        momentum_optimizer = self.MockMomentum(learning_rate=learning_rate,
                                               momentum=0.2,
                                               use_nesterov=True)
F
fengjiayi 已提交
238
        params_grads = append_backward(mean_out)
239 240
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
241 242
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
243
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
244
        sgd_op = opts[-1]
245
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
246
        self.assertTrue(sgd_op.attr('use_nesterov'))
247 248 249 250 251 252 253 254 255

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
256 257 258 259
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
260 261 262
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
263

264

265
class TestAdagradOptimizer(unittest.TestCase):
266

267
    class MockAdagrad(optimizer.AdagradOptimizer):
268

269 270 271 272 273 274 275
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
276
        init_program = framework.Program()
277 278
        program = framework.Program()
        block = program.global_block()
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
306
        learning_rate = 0.01
307 308
        adagrad_optimizer = self.MockAdagrad(learning_rate=learning_rate,
                                             epsilon=1.0e-6)
F
fengjiayi 已提交
309
        params_grads = append_backward(mean_out)
310 311
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
312 313
        with framework.program_guard(program, init_program):
            opts = adagrad_optimizer.apply_gradients(params_grads)
314 315
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adagrad"])
316

317
        # Check accumulators
318 319 320 321 322 323 324
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
325 326
        # Check init_program
        init_ops = init_program.global_block().ops
Z
zhongpu 已提交
327
        self.assertEqual(len(init_ops), 2)
Q
Qiao Longfei 已提交
328
        self.assertEqual(init_ops[1].type, "fill_constant")
329 330 331
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
332

333

334
class TestAdamOptimizer(unittest.TestCase):
335

336
    class MockAdam(optimizer.AdamOptimizer):
337

338 339 340 341 342 343 344 345 346 347
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
348
        init_program = framework.Program()
349 350
        program = framework.Program()
        block = program.global_block()
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
378
        learning_rate = 0.01
379 380 381
        adam_optimizer = self.MockAdam(learning_rate=learning_rate,
                                       beta1=0.9,
                                       beta2=0.999)
F
fengjiayi 已提交
382
        params_grads = append_backward(mean_out)
383 384
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
385 386
        with framework.program_guard(program, init_program):
            opts = adam_optimizer.apply_gradients(params_grads)
A
Aurelius84 已提交
387 388
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adam"])
389 390 391

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
Q
qiaolongfei 已提交
392
        self.assertEqual(len(accumulators), 4)
393 394 395 396 397 398 399 400 401
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
402 403 404
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
405 406
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
Qiao Longfei 已提交
407

408

409
class TestAdamaxOptimizer(unittest.TestCase):
410

411
    class MockAdamax(optimizer.AdamaxOptimizer):
412

413 414 415 416 417 418 419 420 421 422
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
423
        init_program = framework.Program()
424 425
        program = framework.Program()
        block = program.global_block()
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
453
        learning_rate = 0.01
454 455 456
        adamax_optimizer = self.MockAdamax(learning_rate=learning_rate,
                                           beta1=0.9,
                                           beta2=0.999)
F
fengjiayi 已提交
457
        params_grads = append_backward(mean_out)
458 459
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
460 461
        with framework.program_guard(program, init_program):
            opts = adamax_optimizer.apply_gradients(params_grads)
462 463
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts], ["scale", "adamax", "scale"])
464 465 466

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
Q
qiaolongfei 已提交
467
        self.assertEqual(len(accumulators), 3)
468 469 470 471 472 473 474 475 476
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
477 478 479
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
480 481
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
Qiao Longfei 已提交
482

483

484
class TestDpsgdOptimizer(unittest.TestCase):
485

486
    def test_dpsgd_optimizer(self):
487

488 489 490 491
        def check_dpsgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            mul_x = block.create_parameter(dtype="float32",
                                           shape=[5, 10],
                                           lod_level=0,
                                           name="mul.x",
                                           optimize_attr=optimizer_attr)
            mul_y = block.create_var(dtype="float32",
                                     shape=[10, 8],
                                     lod_level=0,
                                     name="mul.y")
            mul_out = block.create_var(dtype="float32",
                                       shape=[5, 8],
                                       lod_level=0,
                                       name="mul.out")
            block.append_op(type="mul",
                            inputs={
                                "X": mul_x,
                                "Y": mul_y
                            },
                            outputs={"Out": mul_out},
                            attrs={"x_num_col_dims": 1})
            mean_out = block.create_var(dtype="float32",
                                        shape=[1],
                                        lod_level=0,
                                        name="mean.out")
            block.append_op(type="mean",
                            inputs={"X": mul_out},
                            outputs={"Out": mean_out})
            dpsgd_optimizer = optimizer.DpsgdOptimizer(learning_rate=0.01,
                                                       clip=100.0,
                                                       batch_size=16.0,
                                                       sigma=0.0)
523 524 525 526 527 528 529 530 531 532 533 534 535
            opts, _ = dpsgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_dpsgd_optimizer({
            'learning_rate': 1.1,
            'clip': 100.0,
            'batch_size': 16.0,
            'sigma': 4.0
        })
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "dpsgd"])


536
class TestDecayedAdagradOptimizer(unittest.TestCase):
537

538
    class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer):
539

540 541 542 543 544 545 546 547 548 549
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_decayed_adagrad_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
577 578 579
        learning_rate = 0.01
        decayed_adagrad_optimizer = self.MockDecayedAdagrad(
            learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
F
fengjiayi 已提交
580
        params_grads = append_backward(mean_out)
581 582
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
583 584
        with framework.program_guard(program, init_program):
            opts = decayed_adagrad_optimizer.apply_gradients(params_grads)
585 586
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "decayed_adagrad"])
587 588 589 590 591 592 593 594 595 596 597 598 599 600

        # Check accumulators
        accumulators = decayed_adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(
            decayed_adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
601 602 603
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
604 605


Q
qiaolongfei 已提交
606
class TestFtrlOptimizer(unittest.TestCase):
607

Q
qiaolongfei 已提交
608
    class MockFtrl(optimizer.FtrlOptimizer):
609

Q
qiaolongfei 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622
        def get_accumulators(self):
            return self._accumulators

        def get_squared_str(self):
            return self._squared_acc_str

        def get_linear_str(self):
            return self._linear_acc_str

    def test_ftrl_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
Q
qiaolongfei 已提交
650
        learning_rate = 0.01
651 652 653 654
        ftrl_optimizer = self.MockFtrl(learning_rate=learning_rate,
                                       l1=0.0,
                                       l2=0.0,
                                       lr_power=-0.5)
Q
qiaolongfei 已提交
655 656 657
        params_grads = append_backward(mean_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0)
658 659
        with framework.program_guard(program, init_program):
            opts = ftrl_optimizer.apply_gradients(params_grads)
660 661
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "ftrl"])
Q
qiaolongfei 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

        # Check accumulators
        accumulators = ftrl_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(ftrl_optimizer.get_squared_str() in accumulators)
        self.assertTrue(ftrl_optimizer.get_linear_str() in accumulators)
        squared_acc = accumulators[ftrl_optimizer.get_squared_str()]
        linear_acc = accumulators[ftrl_optimizer.get_linear_str()]
        self.assertEqual(len(squared_acc), 1)
        self.assertEqual(len(linear_acc), 1)
        self.assertTrue(mul_x.name in squared_acc)
        self.assertTrue(mul_x.name in linear_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 3)
678 679
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
qiaolongfei 已提交
680 681


M
mapingshuo 已提交
682
class TestLookaheadOptimizer(unittest.TestCase):
683

M
mapingshuo 已提交
684 685 686 687 688
    def test_lookahead_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        init_block = init_program.global_block()
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x",
                                       optimize_attr={'learning_rate': 1.1})
        init_mul_x = init_block.create_parameter(dtype="float32",
                                                 shape=[5, 10],
                                                 lod_level=0,
                                                 name="mul.x")
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")

        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
M
mapingshuo 已提交
721 722 723 724 725

        sgd = optimizer.SGD(learning_rate=0.01)
        lookahead = optimizer.LookaheadOptimizer(sgd, alpha=0.5, k=5)
        with framework.program_guard(program, init_program):
            opts, _ = lookahead.minimize(mean_out)
726 727
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
M
mapingshuo 已提交
728 729


M
mapingshuo 已提交
730
class TestRecomputeOptimizer(unittest.TestCase):
731

732
    def net(self, return_input=False, with_dropout=False, with_seed=False):
M
mapingshuo 已提交
733 734
        program = framework.Program()
        block = program.global_block()
735 736 737 738 739 740 741 742 743 744 745 746
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x")
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
747 748

        if with_dropout is True:
749 750 751 752 753 754 755 756
            mul_out_drop = block.create_var(dtype="float32",
                                            shape=[5, 8],
                                            lod_level=0,
                                            name="mul.out.dropout")
            mul_out_mask = block.create_var(dtype="uint8",
                                            shape=[5, 8],
                                            lod_level=0,
                                            name="mul.out.mask")
757
            if with_seed is True:
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
                seed_out = block.create_var(dtype="int32",
                                            shape=[1],
                                            name="seed.out")

        b1 = block.create_parameter(dtype="float32",
                                    shape=[5, 8],
                                    lod_level=0,
                                    name="b1")
        b1_out = block.create_var(dtype="float32",
                                  shape=[5, 8],
                                  lod_level=0,
                                  name="b1_out")
        b2 = block.create_parameter(dtype="float32",
                                    shape=[5, 8],
                                    lod_level=0,
                                    name="b2")
        b2_out = block.create_var(dtype="float32",
                                  shape=[5, 8],
                                  lod_level=0,
                                  name="b2_out")
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
789 790 791 792

        if with_dropout is True:
            dropout_inputs = {'X': [mul_out]}
            if with_seed is True:
793 794 795 796 797 798 799
                block.append_op(type='seed',
                                outputs={'Out': seed_out},
                                attrs={
                                    'deterministic': True,
                                    'rng_name': 'rng0',
                                    'force_cpu': True
                                })
800 801
                dropout_inputs = {'X': [mul_out], 'Seed': [seed_out]}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
            block.append_op(type='dropout',
                            inputs=dropout_inputs,
                            outputs={
                                'Out': [mul_out_drop],
                                'Mask': [mul_out_mask]
                            },
                            attrs={
                                'dropout_prob': 0.5,
                            })
            block.append_op(type="elementwise_add",
                            inputs={
                                "X": mul_out_drop,
                                "Y": b1
                            },
                            outputs={"Out": b1_out})
M
mapingshuo 已提交
817
        else:
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
            block.append_op(type="elementwise_add",
                            inputs={
                                "X": mul_out,
                                "Y": b1
                            },
                            outputs={"Out": b1_out})

        block.append_op(type="elementwise_add",
                        inputs={
                            "X": b1_out,
                            "Y": b2
                        },
                        outputs={"Out": b2_out})
        block.append_op(type="mean",
                        inputs={"X": b2_out},
                        outputs={"Out": mean_out})
M
mapingshuo 已提交
834

835 836
        if return_input == True:
            return mul_x, mul_out, b1_out, b2_out, mean_out
M
mapingshuo 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
        return mul_out, b1_out, b2_out, mean_out

    def test_no_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 12)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_one_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_str_checkpoints(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out.name])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
M
mapingshuo 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_multi_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_out, b2_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

    def test_adjacent_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_out, b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 12)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
    def test_out_of_order_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b2_out, mul_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

    def test_input_as_checkpoints(self):
        mul_x, mul_out, b1_out, b2_out, mean_out = self.net(return_input=True)
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_x, b2_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 14)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "mul", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

M
mapingshuo 已提交
961 962 963 964 965 966
    def test_apply_gradients(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        # apply backward
967 968 969 970
        params_grads = recompute_optimizer.backward(mean_out,
                                                    startup_program=None,
                                                    parameter_list=None,
                                                    no_grad_set=None)
M
mapingshuo 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989

        # apply gradient
        program = mean_out.block.program
        with framework.program_guard(program, None):
            optimize_ops = recompute_optimizer.apply_gradients(params_grads)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_load(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        try:
990 991
            state_dict = {}
            recompute_optimizer.load(state_dict)
M
mapingshuo 已提交
992 993 994 995 996
        except NotImplementedError as e:
            self.assertEqual(
                "load function is not supported by Recompute Optimizer for now",
                cpt.get_exception_message(e))

M
mapingshuo 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    def test_dropout(self):
        """
        If there are dropout layers in the forward nets, we should add a
        seed op
        """
        mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True)
        self.assertEqual(len(mean_out.block.ops), 5)
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "dropout", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 17)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad",
            "sgd", "sgd", "sgd"
        ])

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    def test_dropout_with_determinate_seed(self):
        mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True,
                                                     with_seed=True)
        self.assertEqual(len(mean_out.block.ops), 6)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean"
        ])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 17)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad",
            "sgd", "sgd", "sgd"
        ])

1041 1042 1043
    def test_dropout_with_seed(self):
        """
        when we recompute a dropout op, make sure that the recomputed one
1044 1045
        is the same as the original var.
        """
1046 1047 1048 1049

        def gen_data():
            return {
                "x": np.random.random(size=(100, 3)).astype('float32'),
1050
                "y": np.random.randint(2, size=(100, 1)).astype('int64')
1051 1052 1053
            }

        def mlp(input_x, input_y):
1054 1055 1056
            drop_res = fluid.layers.dropout(input_x,
                                            dropout_prob=0.5,
                                            name="dropout_with_seed_cpu")
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
            prediction = fluid.layers.fc(input=[drop_res],
                                         size=2,
                                         act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return drop_res, prediction, sum_cost

        main_program = Program()
        startup_program = Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with program_guard(main_program, startup_program):
1069 1070 1071
                input_x = fluid.layers.data(name="x",
                                            shape=[3],
                                            dtype='float32')
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                drop_res, prediction, cost = mlp(input_x, input_y)
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([prediction])
                sgd.minimize(cost)

                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                feed_data = gen_data()
                drop_vec = exe.run(feed=feed_data,
                                   program=fluid.default_main_program(),
                                   fetch_list=[
                                       "dropout_with_seed_cpu.tmp_1",
                                       "dropout_with_seed_cpu.tmp_1.subprog_0"
                                   ])
                self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist())


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestRecomputeOptimizerCUDA(unittest.TestCase):
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104
    def test_dropout_with_seed(self):
        """
        when we recompute a dropout op, make sure that the recomputed one
        is the same as the original var.
        """

        def gen_data():
            return {
                "x": np.random.random(size=(100, 3)).astype('float32'),
1105
                "y": np.random.randint(2, size=(100, 1)).astype('int64')
1106 1107 1108
            }

        def mlp(input_x, input_y):
1109 1110 1111
            drop_res = fluid.layers.dropout(input_x,
                                            dropout_prob=0.5,
                                            name="dropout_with_seed_gpu")
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
            prediction = fluid.layers.fc(input=[drop_res],
                                         size=2,
                                         act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return drop_res, prediction, sum_cost

        main_program = Program()
        startup_program = Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with program_guard(main_program, startup_program):
1124 1125 1126
                input_x = fluid.layers.data(name="x",
                                            shape=[3],
                                            dtype='float32')
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                drop_res, prediction, cost = mlp(input_x, input_y)
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([prediction])
                sgd.minimize(cost)

                place = fluid.CUDAPlace(0)
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                feed_data = gen_data()
                drop_vec = exe.run(feed=feed_data,
                                   program=fluid.default_main_program(),
                                   fetch_list=[
                                       "dropout_with_seed_gpu.tmp_1",
                                       "dropout_with_seed_gpu.tmp_1.subprog_0"
                                   ])
                self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist())

M
mapingshuo 已提交
1146

1147
class TestGradientMergeOptimizer(unittest.TestCase):
1148

1149 1150 1151
    def net(self):
        program = framework.Program()
        block = program.global_block()
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
        mul_x = block.create_parameter(dtype="float32",
                                       shape=[5, 10],
                                       lod_level=0,
                                       name="mul.x")
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        b1 = block.create_parameter(dtype="float32",
                                    shape=[5, 8],
                                    lod_level=0,
                                    name="b1")
        b1_out = block.create_var(dtype="float32",
                                  shape=[5, 8],
                                  lod_level=0,
                                  name="b1_out")
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        block.append_op(type="elementwise_add",
                        inputs={
                            "X": mul_out,
                            "Y": b1
                        },
                        outputs={"Out": b1_out})
        block.append_op(type="mean",
                        inputs={"X": b1_out},
                        outputs={"Out": mean_out})
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
        return mean_out

    def test_program_desc(self, ):
        cost = self.net()
        main_program = cost.block.program
        init_program = framework.Program()
        self.assertEqual(main_program.num_blocks, 1)
        self.assertEqual(len(cost.block.ops), 3)
        self.assertEqual([op.type for op in cost.block.ops],
                         ["mul", "elementwise_add", "mean"])

        opt = optimizer.SGD(learning_rate=1.0)
        opt = optimizer.GradientMergeOptimizer(opt, k_steps=4)
        with framework.program_guard(main_program, init_program):
            ops, params_grads = opt.minimize(cost)

1208
        self.assertEqual(main_program.num_blocks, 2)
1209 1210

        # main block
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        self.assertEqual(len(cost.block.ops), 13)
        self.assertEqual(
            [op.type for op in cost.block.ops],
            [
                'mul',
                'elementwise_add',
                'mean',
                'fill_constant',
                'mean_grad',
                'elementwise_add_grad',
                'mul_grad',
                'increment',  # step += 1
                'elementwise_mod',  # step %= k_steps
                'equal',  # cond_var == (step == 0)
                'elementwise_add',
                'elementwise_add',
                'conditional_block',
            ])
1229

1230 1231
        # optimize block
        self.assertEqual(len(main_program.block(1).ops), 6)
1232 1233 1234
        self.assertEqual(
            [op.type for op in main_program.block(1).ops],
            ['scale', 'scale', 'sgd', 'sgd', 'fill_constant', 'fill_constant'])
1235 1236


L
Leo Chen 已提交
1237 1238 1239 1240 1241 1242 1243
class TestOptimizerDtype(unittest.TestCase):
    '''
    The dtype of optimizer should be inferred by parameters, and the learning rate
    is cteated with the same dtype.
    '''

    def check_with_dtype(self, dtype):
1244

L
Leo Chen 已提交
1245
        class MyLayer(paddle.nn.Layer):
1246

L
Leo Chen 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
            def __init__(self, dtype):
                super(MyLayer, self).__init__()
                self._w = self.create_parameter([2, 3], dtype=dtype)
                self._b = self.create_parameter([2, 3], dtype=dtype)

            def forward(self, x):
                return x * self._w + self._b

        with paddle.fluid.dygraph.guard():
            model = MyLayer(dtype)
            x = paddle.rand([10, 2, 3], dtype=dtype)
            loss = model(x)
            adam = paddle.optimizer.Adam(parameters=model.parameters())
            loss.backward()
            adam.step()
            self.assertEqual(adam._dtype, convert_np_dtype_to_dtype_(dtype))

    def test_float64(self):
        self.check_with_dtype('float64')

    def test_float32(self):
        self.check_with_dtype('float32')

C
chentianyu03 已提交
1270 1271 1272 1273 1274
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_float64()
            self.test_float32()

L
Leo Chen 已提交
1275

1276 1277
class TestMasterWeightSaveForFP16(unittest.TestCase):
    '''
1278
    For Amp-O2, some optimizer(Momentum, Adam ...) will create master weights for parameters to improve the accuracy.
1279 1280 1281
    Master weights will be saved by optimizer::state_dict.
    '''

1282 1283 1284 1285 1286 1287
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1288 1289 1290 1291 1292
    def check_with_opt_state_dict(self, use_save_load=True):
        paddle.seed(100)
        numpy.random.seed(100)

        class SimpleNet(paddle.nn.Layer):
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
            def __init__(self, input_size, output_size):
                super(SimpleNet, self).__init__()
                self.linears = paddle.nn.LayerList([
                    paddle.nn.Linear(input_size, output_size) for i in range(1)
                ])

            def forward(self, x):
                for i, l in enumerate(self.linears):
                    x = self.linears[i](x)
                return x

        input_size = 2  # 设为较大的值
        output_size = 2  # 设为较大的值
        batch_size = 2  # batch_size 为8的倍数
        nums_batch = 10

        class RandomDataset(Dataset):
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
            def __init__(self, num_samples):
                self.num_samples = num_samples

            def __getitem__(self, idx):
                data = numpy.random.random([input_size]).astype('float16')
                label = numpy.random.random([output_size]).astype('float16')
                return data, label

            def __len__(self):
                return self.num_samples

        dataset = RandomDataset(nums_batch * batch_size)
1324 1325 1326 1327 1328
        loader = paddle.io.DataLoader(dataset,
                                      batch_size=batch_size,
                                      shuffle=False,
                                      drop_last=True,
                                      num_workers=0)
1329 1330 1331

        mse = paddle.nn.MSELoss()
        model = SimpleNet(input_size, output_size)  # 定义模型
1332 1333 1334
        optimizer = paddle.optimizer.Momentum(learning_rate=0.0001,
                                              parameters=model.parameters(),
                                              multi_precision=True)  # 定义优化器
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
        scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
        model = paddle.amp.decorate(models=model, level='O2')

        for i, (data, label) in enumerate(loader):
            with paddle.amp.auto_cast(level='O2'):
                output = model(data)
                loss = mse(output, label)
            scaled = scaler.scale(loss)
            scaled.backward()
            scaler.step(optimizer)
            scaler.update()
            optimizer.clear_grad(set_to_zero=False)

            if use_save_load and i == 5:
1349 1350 1351 1352 1353 1354
                model_path = os.path.join(self.temp_dir.name, "model.pdparams")
                optimizer_path = os.path.join(self.temp_dir.name, "opt.pdopt")
                paddle.save(model.state_dict(), model_path)
                paddle.save(optimizer.state_dict(), optimizer_path)
                model.set_state_dict(paddle.load(model_path))
                optimizer.set_state_dict(paddle.load(optimizer_path))
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

        return loss.numpy()

    def test_with_state_dict(self):
        if core.is_compiled_with_cuda():
            with fluid.dygraph.guard():
                out_use_state_dict = self.check_with_opt_state_dict(
                    use_save_load=True)
                out_no_state_dict = self.check_with_opt_state_dict(
                    use_save_load=False)
1365
            np.testing.assert_array_equal(out_use_state_dict, out_no_state_dict)
1366 1367


Q
Qiao Longfei 已提交
1368
if __name__ == '__main__':
1369
    paddle.enable_static()
Q
Qiao Longfei 已提交
1370
    unittest.main()