tensor.cc 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/include/tensor.h"
16 17 18 19 20 21

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22

23
#include "paddle/phi/api/lib/utils/allocator.h"
24 25
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/ddim.h"
26
#include "paddle/phi/core/dense_tensor.h"
27
#include "paddle/phi/core/enforce.h"
28
#include "paddle/phi/core/selected_rows.h"
29 30
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
J
Jack Zhou 已提交
31
#include "paddle/phi/core/string_tensor.h"
32 33 34
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/core/tensor_utils.h"
35

36 37 38 39
#include "paddle/fluid/platform/stream/cuda_stream.h"

namespace paddle {
namespace experimental {
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
namespace detail {
static Place GetCorrectPlaceByPlaceType(const Place &place_type) {
  auto alloc_type = place_type.GetType();
  switch (alloc_type) {
    case AllocationType::CPU:
      return place_type;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    case AllocationType::GPU:
      return phi::Place(AllocationType::GPU,
                        phi::backends::gpu::GetCurrentDeviceId());
#endif
    default:
      PADDLE_THROW(phi::errors::Unavailable(
          "The PlaceType is a legacy design, only supports CPU and GPU, "
          "and will not support other place types in the future."));
  }
}
}  // namespace detail
58 59 60 61 62

/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

63
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl)
64
    : impl_(std::move(tensor_impl)) {
65 66 67
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::InvalidArgument("TensorImpl with nullptr is not supported"));
68 69
}

70
Tensor::Tensor(const Place &place) {
71 72 73 74 75 76 77 78
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place) constructor is deprecated since version "
         "2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place`, and datatype, shape, layout, etc. is also "
         "required.";
79 80 81 82 83 84 85 86
  DefaultAllocator alloc(detail::GetCorrectPlaceByPlaceType(place));
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({}), phi::DataLayout::NCHW))));
}

Tensor::Tensor(const Place &place, const std::vector<int64_t> &shape) {
87 88 89 90 91 92 93 94
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place, shape) constructor is deprecated since "
         "version 2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place` and `shape`, and datatype, layout, etc. is also "
         "required.";
95 96 97 98 99 100 101
  DefaultAllocator alloc(detail::GetCorrectPlaceByPlaceType(place));
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(phi::DataType::FLOAT32,
                                     phi::make_ddim({shape}),
                                     phi::DataLayout::NCHW))));
}
102

103
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl,
104 105
               const std::string &name)
    : impl_(std::move(tensor_impl)), name_(std::move(name)) {}
106

107 108 109 110 111 112
/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

113
phi::DDim Tensor::dims() const { return impl_->dims(); }
114 115

std::vector<int64_t> Tensor::shape() const {
116 117 118 119 120
  auto dims = impl_->dims();
  if (dims.size() == 1 && dims.at(0) == 0) {
    return {};
  }
  return phi::vectorize<int64_t>(dims);
121 122 123
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
124 125 126 127 128 129 130 131 132
  LOG_FIRST_N(WARNING, 1)
      << "The function of resetting the shape of the uninitialized "
         "Tensor of the `reshape` method is deprecated since version "
         "2.3, and will be removed in version 2.4, please use "
         "`paddle::empty/full` method to create a new Tensor "
         "instead. "
         "reason: `reshape` means changing the tensor shape without "
         "touching underlying data, this requires the total size of "
         "the tensor to remain constant.";
C
Chen Weihang 已提交
133
  if (is_dense_tensor()) {
134
    static_cast<phi::DenseTensor *>(impl_.get())->Resize(phi::make_ddim(shape));
135
  } else {
136
    PADDLE_THROW(phi::errors::Unimplemented(
137 138
        "Only support reshape operation on DenseTensor now."));
  }
139 140
}

141
DataType Tensor::dtype() const { return impl_->dtype(); }
142

143
DataType Tensor::type() const { return impl_->dtype(); }
144 145 146

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
147
bool Tensor::is_dense_tensor() const {
148
  return phi::DenseTensor::classof(impl_.get());
C
Chen Weihang 已提交
149
}
150
bool Tensor::is_selected_rows() const {
151
  return phi::SelectedRows::classof(impl_.get());
152
}
153 154 155 156 157 158
bool Tensor::is_sparse_coo_tensor() const {
  return phi::SparseCooTensor::classof(impl_.get());
}
bool Tensor::is_sparse_csr_tensor() const {
  return phi::SparseCsrTensor::classof(impl_.get());
}
J
Jack Zhou 已提交
159 160 161
bool Tensor::is_string_tensor() const {
  return phi::StringTensor::classof(impl_.get());
}
162 163
/* Part 3: Device and Backend methods */

164 165 166 167 168 169 170
Place Tensor::place() const {
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::PermissionDenied(
          "Null pointer error, the impl_ of Tensor should not be "
          "Null when calling Tensor::place()."));
  return impl_->place();
171 172
}

C
Chen Weihang 已提交
173
bool Tensor::is_cpu() const { return paddle::platform::is_cpu_place(place()); }
174

C
Chen Weihang 已提交
175
bool Tensor::is_gpu() const { return paddle::platform::is_gpu_place(place()); }
176

177
bool Tensor::is_gpu_pinned() const {
C
Chen Weihang 已提交
178
  return paddle::platform::is_cuda_pinned_place(place());
179 180
}

181 182 183 184
/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
185 186 187 188 189 190 191 192 193 194
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the place, datatype, and data layout of tensor may be in "
         "an illegal state.";
C
Chen Weihang 已提交
195
  if (is_dense_tensor()) {
196 197
    return static_cast<phi::DenseTensor *>(impl_.get())
        ->mutable_data<T>(place());
198 199 200 201
  }
  return nullptr;
}

202 203 204 205 206 207 208 209
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
210 211 212 213 214 215
template PADDLE_API phi::dtype::complex<float>
    *Tensor::mutable_data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::mutable_data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *
Tensor::mutable_data<phi::dtype::float16>();
216 217

template <typename T>
218
T *Tensor::mutable_data(const Place &place) {
219 220 221 222 223 224 225 226 227 228
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the datatype, and data layout of tensor may be in "
         "an illegal state.";
229
  if (is_dense_tensor()) {
230
    return static_cast<phi::DenseTensor *>(impl_.get())->mutable_data<T>(place);
231 232
  }
  return nullptr;
233 234
}

235 236 237 238 239 240 241 242
template PADDLE_API float *Tensor::mutable_data<float>(const Place &place);
template PADDLE_API double *Tensor::mutable_data<double>(const Place &place);
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(const Place &place);
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(const Place &place);
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(const Place &place);
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(const Place &place);
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(const Place &place);
template PADDLE_API bool *Tensor::mutable_data<bool>(const Place &place);
243
template PADDLE_API phi::dtype::complex<float>
244
    *Tensor::mutable_data<phi::dtype::complex<float>>(const Place &place);
245
template PADDLE_API phi::dtype::complex<double>
246
    *Tensor::mutable_data<phi::dtype::complex<double>>(const Place &place);
247
template PADDLE_API phi::dtype::float16 *
248
Tensor::mutable_data<phi::dtype::float16>(const Place &place);
249 250 251

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
252
  if (is_dense_tensor()) {
253 254 255
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())->value().data<T>();
256 257 258 259
  }
  return nullptr;
}

260 261 262 263 264 265 266 267
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
268 269 270 271 272 273 274 275
template PADDLE_API const phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>() const;
template PADDLE_API const phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>() const;
template PADDLE_API const phi::dtype::float16 *
Tensor::data<phi::dtype::float16>() const;
template PADDLE_API const phi::dtype::bfloat16 *
Tensor::data<phi::dtype::bfloat16>() const;
276 277 278

template <typename T>
T *Tensor::data() {
279
  if (is_dense_tensor()) {
280 281 282
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())
283 284 285
        ->mutable_value()
        ->data<T>();
  }
286 287 288
  return nullptr;
}

289 290 291 292 293 294 295 296
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
297 298 299 300 301
template PADDLE_API phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *Tensor::data<phi::dtype::float16>();
302

303
// TODO(chenweihang): replace slice impl by API
304
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
305
  if (is_dense_tensor()) {
306 307
    return Tensor(std::make_shared<phi::DenseTensor>(
        std::move(phi::DenseTensorUtils::Slice(
308
            *(static_cast<phi::DenseTensor *>(impl_.get())),
309 310 311
            begin_idx,
            end_idx))));
  } else {
312
    PADDLE_THROW(phi::errors::Unimplemented(
313
        "Only support slice operation on DenseTensor now."));
314
  }
315 316
}

317
const std::shared_ptr<phi::TensorBase> &Tensor::impl() const { return impl_; }
318

319
void Tensor::set_impl(const std::shared_ptr<phi::TensorBase> &impl) {
320 321 322
  impl_ = impl;
}

323 324 325 326
void Tensor::set_impl(std::shared_ptr<phi::TensorBase> &&impl) {
  impl_ = std::move(impl);
}

327 328 329 330 331 332
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

333
/* Part 5: Status utils methods */
334 335 336

bool Tensor::defined() const { return impl_ != nullptr; }

337
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
338 339

bool Tensor::is_initialized() const {
340 341 342 343
  LOG_FIRST_N(WARNING, 1)
      << "The `is_initialized` method is deprecated since version "
         "2.3, and will be removed in version 2.4! "
         "Please use `initialized` method instead.";
344
  return defined() && impl_->initialized();
345 346 347 348
}

void Tensor::reset() { impl_.reset(); }

349
/* Part 6: Operator overloading */
350 351 352 353

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
354
  name_ = x.name_;
355 356 357 358 359 360
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
361
  name_ = std::move(x.name_);
362 363 364 365 366 367 368
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

369 370 371 372 373
const std::shared_ptr<AbstractAutogradMeta> &Tensor::mutable_autograd_meta()
    const {
  return autograd_meta_;
}

374 375 376 377 378
void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

379 380 381
void Tensor::bump_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
382
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
383 384 385 386 387 388 389 390 391 392
    inplace_version_counter.Bump();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "bump_inplace_version is only supported on DenseTensor now."));
  }
}

uint32_t Tensor::current_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
393
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
394 395 396 397 398 399 400 401
    return inplace_version_counter.CurrentVersion();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "current_inplace_version is only supported on DenseTensor now."));
  }
  return 0;
}

402 403 404 405
void Tensor::reset_inplace_version(bool set_to_zero) {
  if (set_to_zero) {
    if (is_dense_tensor()) {
      auto &inplace_version_counter =
406
          static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
407 408 409 410 411
      inplace_version_counter.SetInplaceVersionToZero();
    }
  }
}

412 413
}  // namespace experimental
}  // namespace paddle