relu_op_simple.cu 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/extension.h"

template <typename data_t>
__global__ void fill_constant_cuda_kernel(data_t* y,
                                          const int num,
                                          data_t value) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  for (int i = gid; i < num; i += blockDim.x * gridDim.x) {
    y[i] = value;
  }
}

template <typename data_t>
__global__ void relu_cuda_forward_kernel(const data_t* x,
                                         data_t* y,
                                         const int num) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  for (int i = gid; i < num; i += blockDim.x * gridDim.x) {
    y[i] = max(x[i], static_cast<data_t>(0.));
  }
}

template <typename data_t>
__global__ void relu_cuda_backward_kernel(const data_t* dy,
                                          const data_t* y,
                                          data_t* dx,
                                          const int num) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  for (int i = gid; i < num; i += blockDim.x * gridDim.x) {
    dx[i] = dy[i] * (y[i] > 0 ? 1. : 0.);
  }
}

std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor& x) {
  auto out = paddle::Tensor(paddle::PlaceType::kGPU);
  out.reshape(x.shape());

  int numel = x.size();
  int block = 512;
  int grid = (numel + block - 1) / block;
  PD_DISPATCH_FLOATING_TYPES(
      x.type(), "relu_cuda_forward_kernel", ([&] {
        relu_cuda_forward_kernel<data_t><<<grid, block>>>(
            x.data<data_t>(), out.mutable_data<data_t>(x.place()), numel);
      }));
  // fake multi output: Fake_1
  auto fake_float64 = paddle::Tensor(paddle::PlaceType::kGPU);
  fake_float64.reshape(x.shape());
  fill_constant_cuda_kernel<double><<<grid, block>>>(
      fake_float64.mutable_data<double>(x.place()), numel, 0.);
  // fake multi output: ZFake_1
  auto zfake_int32 = paddle::Tensor(paddle::PlaceType::kGPU);
  zfake_int32.reshape(x.shape());
  fill_constant_cuda_kernel<int32_t><<<grid, block>>>(
      zfake_int32.mutable_data<int32_t>(x.place()), numel, 1);

  return {out, fake_float64, zfake_int32};
}

std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor& x,
                                               const paddle::Tensor& out,
                                               const paddle::Tensor& grad_out) {
  auto grad_x = paddle::Tensor(paddle::PlaceType::kGPU);
  grad_x.reshape(x.shape());

  int numel = out.size();
  int block = 512;
  int grid = (numel + block - 1) / block;
  PD_DISPATCH_FLOATING_TYPES(
      out.type(), "relu_cuda_backward_kernel", ([&] {
        relu_cuda_backward_kernel<data_t><<<grid, block>>>(
            grad_out.data<data_t>(),
            out.data<data_t>(),
            grad_x.mutable_data<data_t>(x.place()),
            numel);
      }));

  return {grad_x};
}