ops.py 5.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
P
peizhilin 已提交
16
import os
17
from .layer_function_generator import generate_layer_fn, generate_activation_fn
C
chengduo 已提交
18 19
from .. import core
from ..framework import convert_np_dtype_to_dtype_
Y
Yang Yu 已提交
20

21
__activations_noattr__ = [
22 23 24 25
    'sigmoid',
    'logsigmoid',
    'exp',
    'tanh',
26
    'atan',
27 28
    'tanh_shrink',
    'sqrt',
Z
zhoukunsheng 已提交
29
    'rsqrt',
30 31 32
    'abs',
    'ceil',
    'floor',
C
add cos  
chengduoZH 已提交
33
    'cos',
34 35
    'acos',
    'asin',
C
add sin  
chengduoZH 已提交
36
    'sin',
37 38 39 40 41
    'round',
    'reciprocal',
    'square',
    'softplus',
    'softsign',
Y
Yu Yang 已提交
42 43
]

X
Xin Pan 已提交
44
__all__ = []
Y
Yang Yu 已提交
45

Y
Yu Yang 已提交
46
for _OP in set(__all__):
47
    globals()[_OP] = generate_layer_fn(_OP)
Y
yuyang18 已提交
48

S
sneaxiy 已提交
49 50 51 52 53
# It is a hot fix in some unittest using:
#   fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals()['_scale'] = generate_layer_fn('scale')

S
sneaxiy 已提交
54 55
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')

56 57 58
__all__ += __activations_noattr__

for _OP in set(__activations_noattr__):
59
    globals()[_OP] = generate_activation_fn(_OP)
60

Y
yuyang18 已提交
61 62 63 64 65
__all__ += ["uniform_random"]

_uniform_random_ = generate_layer_fn('uniform_random')


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
    This operator initializes a variable with random values sampled from a
    uniform distribution. The random result is in set [min, max].

    Args:
        shape (list): The shape of output variable.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data, such as
            float32, float64 etc. Default: float32.
        min (float): Minimum value of uniform random. Default -1.0.
        max (float): Maximun value of uniform random. Default 1.0.
        seed (int): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

    Examples:
        .. code-block:: python
84
     
85
            import paddle.fluid as fluid
86
            result = fluid.layers.uniform_random(shape=[32, 784])
87 88
    """

C
chengduo 已提交
89 90
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
91
    locals_var = locals().copy()
Y
yuyang18 已提交
92
    kwargs = dict()
93
    for name, val in locals_var.items():
Y
yuyang18 已提交
94 95 96 97
        if val is not None:
            kwargs[name] = val
    return _uniform_random_(**kwargs)

Y
yuyang18 已提交
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
__all__ += ['softshrink']

_softshrink_ = generate_layer_fn('softshrink')


def softshrink(x, alpha=None):
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            if name == 'alpha':
                kwargs['lambda'] = val
            else:
                kwargs[name] = val
    return _softshrink_(**kwargs)


softshrink.__doc__ = """
:strong:`Softshrink Activation Operator`

..  math::
    out = \begin{cases}
            x - \alpha, \text{if } x > \alpha \\
            x + \alpha, \text{if } x < -\alpha \\
            0,  \text{otherwise}
            \end{cases}


Args:
    x: Input of Softshrink operator
    alpha (FLOAT): non-negative offset
    
Returns:
    Output of Softshrink operator

Examples:
    .. code-block:: python
    
        import paddle.fluid as fluid
        data = fluid.layers.data(name="input", shape=[784])
        result = fluid.layers.softshrink(x=data, alpha=0.3)
"""

Y
yuyang18 已提交
142 143 144 145 146 147
__all__ += ['hard_shrink']

_hard_shrink_ = generate_layer_fn('hard_shrink')


def hard_shrink(x, threshold=None):
148
    locals_var = locals().copy()
Y
yuyang18 已提交
149
    kwargs = dict()
150
    for name, val in locals_var.items():
Y
yuyang18 已提交
151 152 153 154 155
        if val is not None:
            kwargs[name] = val
    return _hard_shrink_(**kwargs)


Y
yuyang18 已提交
156
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
Y
yuyang18 已提交
157 158
Examples:

159
    >>> import paddle.fluid as fluid
Y
yuyang18 已提交
160 161 162
    >>> data = fluid.layers.data(name="input", shape=[784])
    >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
Y
yuyang18 已提交
163

W
wopeizl 已提交
164 165 166 167 168 169
__all__ += ['cumsum']

_cum_sum_ = generate_layer_fn('cumsum')


def cumsum(x, axis=None, exclusive=None, reverse=None):
170
    locals_var = locals().copy()
W
wopeizl 已提交
171
    kwargs = dict()
172
    for name, val in locals_var.items():
W
wopeizl 已提交
173 174 175 176 177 178 179 180
        if val is not None:
            kwargs[name] = val
    return _cum_sum_(**kwargs)


cumsum.__doc__ = _cum_sum_.__doc__ + """
Examples:

181
    >>> import paddle.fluid as fluid
W
wopeizl 已提交
182 183 184
    >>> data = fluid.layers.data(name="input", shape=[32, 784])
    >>> result = fluid.layers.cumsum(data, axis=0)
"""
Y
yuyang18 已提交
185 186 187 188 189 190 191

__all__ += ['thresholded_relu']

_thresholded_relu_ = generate_layer_fn('thresholded_relu')


def thresholded_relu(x, threshold=None):
192
    locals_var = locals().copy()
Y
yuyang18 已提交
193
    kwargs = dict()
194
    for name, val in locals_var.items():
Y
yuyang18 已提交
195 196 197
        if val is not None:
            kwargs[name] = val

C
chengduo 已提交
198
    return _thresholded_relu_(**kwargs)
Y
yuyang18 已提交
199 200 201 202 203


thresholded_relu.__doc__ = _thresholded_relu_.__doc__ + """
Examples:

204
    >>> import paddle.fluid as fluid
Y
yuyang18 已提交
205 206 207
    >>> data = fluid.layers.data(name="input", shape=[1])
    >>> result = fluid.layers.thresholded_relu(data, threshold=0.4)
"""