initializer.py 23.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
import numpy as np
19
import contextlib
20
from .core import VarDesc
W
Wu Yi 已提交
21
from . import unique_name
22

23
__all__ = [
24 25 26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
    'MSRA', 'force_init_on_cpu', 'init_on_cpu', 'ConstantInitializer',
    'UniformInitializer', 'NormalInitializer', 'TruncatedNormalInitializer',
27 28
    'XavierInitializer', 'BilinearInitializer', 'MSRAInitializer',
    'NumpyArrayInitializer'
29
]
30

31 32 33 34
_force_init_on_cpu_ = False


def force_init_on_cpu():
Q
qiaolongfei 已提交
35 36 37
    """
    The flag of whether force to init variables on CPU.

Q
Qiao Longfei 已提交
38 39
    Returns:
        bool: the state if we should force init on CPU.
40

Q
qiaolongfei 已提交
41
    Examples:
Q
Qiao Longfei 已提交
42

Q
qiaolongfei 已提交
43 44 45
        .. code-block:: python

            if force_init_on_cpu():
Q
Qiao Longfei 已提交
46
                create_op('force_cpu': force_init_on_cpu())
Q
qiaolongfei 已提交
47 48

    """
49 50 51 52 53 54
    return _force_init_on_cpu_


@contextlib.contextmanager
def init_on_cpu():
    """
Q
qiaolongfei 已提交
55
    Force the variable to be inited on CPU.
56 57

    Examples:
Q
qiaolongfei 已提交
58 59 60 61
        .. code-block:: python

            with init_on_cpu():
                step = layers.create_global_var()
62 63 64 65 66 67 68 69 70

    """
    global _force_init_on_cpu_

    pre_state = force_init_on_cpu()
    _force_init_on_cpu_ = True
    yield
    _force_init_on_cpu_ = pre_state

71 72 73 74 75 76 77 78 79 80

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
81
    def __init__(self):
82 83 84 85 86 87 88
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

124 125 126

class ConstantInitializer(Initializer):
    """Implements the constant initializer
127 128 129 130 131 132 133 134 135

    Args:
        value (float): constant value to initialize the variable

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
136 137
    """

138
    def __init__(self, value=0.0, force_cpu=False):
139 140 141
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
142
        self._force_cpu = force_cpu
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
158
        op = block._prepend_op(
159 160 161 162
            type="fill_constant",
            outputs={"Out": var},
            attrs={
                "shape": var.shape,
F
fengjiayi 已提交
163
                "dtype": int(var.dtype),
164 165
                "value": float(self._value),
                'force_cpu': self._force_cpu or force_init_on_cpu()
M
minqiyang 已提交
166 167
            },
            stop_gradient=True)
168 169 170 171 172
        var.op = op
        return op


class UniformInitializer(Initializer):
173
    """Implements the random uniform distribution initializer
174 175 176 177 178 179 180 181 182 183 184

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
185 186 187 188 189
    """

    def __init__(self, low=-1.0, high=1.0, seed=0):
        assert low is not None
        assert high is not None
190
        assert high >= low
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        assert seed is not None
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
211 212
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(['gaussian_random', 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
227
        op = block._prepend_op(
228
            type="uniform_random",
W
Wu Yi 已提交
229
            outputs={"Out": out_var},
230 231
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
232
                "dtype": out_dtype,
233 234 235
                "min": self._low,
                "max": self._high,
                "seed": self._seed
M
minqiyang 已提交
236 237
            },
            stop_gradient=True)
W
Wu Yi 已提交
238 239 240 241 242 243 244 245 246

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

247 248
        var.op = op
        return op
249 250 251


class NormalInitializer(Initializer):
252 253 254 255 256 257 258 259 260 261 262 263
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
289 290
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(['gaussian_random', 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
305
        op = block._prepend_op(
306
            type="gaussian_random",
W
Wu Yi 已提交
307
            outputs={"Out": out_var},
308 309
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
310
                "dtype": out_dtype,
311 312
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
313 314
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
315 316
            },
            stop_gradient=True)
W
Wu Yi 已提交
317 318 319 320 321 322 323 324

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
325 326
        var.op = op
        return op
327 328


329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
348
        super(TruncatedNormalInitializer, self).__init__()
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add truncated normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
        op = block._prepend_op(
            type="truncated_gaussian_random",
            outputs={"Out": var},
            attrs={
                "shape": var.shape,
                "dtype": int(var.dtype),
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
378 379
            },
            stop_gradient=True)
380 381 382 383
        var.op = op
        return op


384
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
385
    """
386
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
387 388 389
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
390 391 392

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
393 394 395 396 397 398
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

399
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
400
    is
401

Q
qiaolongfei 已提交
402
    .. math::
403

Q
qiaolongfei 已提交
404
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
405 406


Q
qiaolongfei 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for Xavier initialization. If None, it is
                inferred from the variable.
        fan_out (float): fan_out for Xavier initialization. If None, it is
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
455 456 457
        if self._seed == 0:
            self._seed = block.program.random_seed

458 459
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
460
            op = block._prepend_op(
461 462 463 464
                type="uniform_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
465
                    "dtype": int(var.dtype),
466 467 468
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
469 470
                },
                stop_gradient=True)
471 472 473

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
474
            op = block._prepend_op(
475 476 477 478
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
479
                    "dtype": int(var.dtype),
480 481 482
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
483 484
                },
                stop_gradient=True)
485 486
        var.op = op
        return op
487 488 489 490 491 492


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
555 556 557
        if self._seed == 0:
            self._seed = block.program.random_seed

558 559
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
560
            op = block._prepend_op(
561 562 563 564
                type="uniform_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
565
                    "dtype": int(var.dtype),
566 567 568
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
569 570
                },
                stop_gradient=True)
571 572 573

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
574
            op = block._prepend_op(
575 576 577 578
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
579
                    "dtype": int(var.dtype),
580 581 582
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
583 584
                },
                stop_gradient=True)
585 586
        var.op = op
        return op
587 588


589
class BilinearInitializer(Initializer):
590
    """
591 592 593
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

    Examples:

        .. code-block:: python

            factor = 2
            w_attr = ParamAttr(learning_rate=0., regularizer=L2Decay(0.),
                               initializer=Bilinear())
            conv_up = fluid.layers.conv2d_transpose(
                input,
                num_filters=C,
                output_size=None,
                filter_size=2 * factor - factor % 2,
                padding=ceil((factor - 1) / 2.),
                stride=factor,
                groups=C,
                param_attr=w_attr,
                bias_attr=False)

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
614 615 616 617 618
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
619 620
    interpolation unchanged during training.

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
        """Add biliear initialization ops for a variable

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
637
            Operator: the initialization op
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

        if var.dtype == VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
            outputs={'Out': [var]},
            attrs={
                'dtype': var.dtype,
                'shape': list(shape),
                value_name: values
            })
        var.op = op
        return op


687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array

    Args:
        value (numpy): numpy array to initialize the variable

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        dtype = framework.convert_np_dtype_to_dtype_(self._value.dtype)
        if dtype == VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in self._value.flat]
        elif dtype == VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in self._value.flat]
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
        if self._value.size > 1024 * 1024 * 5:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
            outputs={'Out': var},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
                value_name: values
            },
            stop_gradient=True)
        var.op = op
        return op


745 746 747 748 749 750 751 752 753 754 755 756
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
757
TruncatedNormal = TruncatedNormalInitializer
758 759
Xavier = XavierInitializer
MSRA = MSRAInitializer
760
Bilinear = BilinearInitializer