math_kernel.cu 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/kernels/math_kernel.h"

#include "paddle/pten/backends/gpu/gpu_context.h"
18
#include "paddle/pten/kernels/funcs/elementwise_functor.h"
19
#include "paddle/pten/kernels/gpu/elementwise.h"
20
#include "paddle/pten/kernels/gpu/reduce.h"
21 22 23 24 25 26 27 28 29 30

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/platform/enforce.h"
31 32
#include "paddle/pten/common/complex.h"
#include "paddle/pten/common/float16.h"
33 34 35 36 37
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/kernel_registry.h"

namespace pten {

38 39
#define DEFINE_CUDA_ELEMENTWISE_OP(name)                             \
  template <typename T, typename Context>                            \
40 41 42 43 44
  void name##RawKernel(const Context& dev_ctx,                       \
                       const DenseTensor& x,                         \
                       const DenseTensor& y,                         \
                       int axis,                                     \
                       DenseTensor* out) {                           \
45 46 47 48 49 50 51 52
    std::vector<const DenseTensor*> inputs;                          \
    std::vector<DenseTensor*> outputs;                               \
    inputs.emplace_back(&x);                                         \
    inputs.emplace_back(&y);                                         \
    outputs.emplace_back(out);                                       \
    out->mutable_data<T>();                                          \
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(     \
        dev_ctx, inputs, &outputs, axis, funcs::name##Functor<T>()); \
53 54 55 56 57 58 59
  }

/**
 * Kernels
 */

template <typename T, typename Context>
60 61 62 63 64 65
void MeanRawKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const std::vector<int64_t>& dims,
                   bool keep_dim,
                   bool reduce_all,
                   DenseTensor* out) {
66 67 68 69 70
  auto out_dtype = x.dtype();
  pten::Reduce<T, kps::AddFunctor, kps::DivideFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

71 72 73 74 75 76 77 78 79 80 81 82
template <typename T, typename Context>
void SumRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DataType out_dtype,
                  DenseTensor* out) {
  pten::Reduce<T, kps::AddFunctor, kps::IdentityFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
// Create the definition of Add
DEFINE_CUDA_ELEMENTWISE_OP(Add)
// Create the definition of Subtract
DEFINE_CUDA_ELEMENTWISE_OP(Subtract)
// Create the definition of Multiply
DEFINE_CUDA_ELEMENTWISE_OP(Multiply)
// Create the definition of Divide
DEFINE_CUDA_ELEMENTWISE_OP(Divide)

}  // namespace pten

using float16 = paddle::platform::float16;
using complex64 = ::paddle::platform::complex<float>;
using complex128 = ::paddle::platform::complex<double>;

98
PT_REGISTER_KERNEL(add_raw,
99 100
                   GPU,
                   ALL_LAYOUT,
101
                   pten::AddRawKernel,
102 103 104 105 106 107 108
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
109
PT_REGISTER_KERNEL(subtract_raw,
110 111
                   GPU,
                   ALL_LAYOUT,
112
                   pten::SubtractRawKernel,
113 114 115 116 117 118 119
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
120
PT_REGISTER_KERNEL(divide_raw,
121 122
                   GPU,
                   ALL_LAYOUT,
123
                   pten::DivideRawKernel,
124 125 126 127 128 129 130
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
131
PT_REGISTER_KERNEL(multiply_raw,
132 133
                   GPU,
                   ALL_LAYOUT,
134
                   pten::MultiplyRawKernel,
135 136 137 138 139 140 141 142
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   float16,
                   complex64,
                   complex128) {}
143
PT_REGISTER_KERNEL(sum_raw,
144 145
                   GPU,
                   ALL_LAYOUT,
146
                   pten::SumRawKernel,
147 148 149 150 151 152 153 154
                   bool,
                   float,
                   double,
                   float16,
                   int,
                   int64_t,
                   complex64,
                   complex128) {
155 156
  kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}
157 158 159 160 161 162 163 164 165

PT_REGISTER_KERNEL(mean_raw,
                   GPU,
                   ALL_LAYOUT,
                   pten::MeanRawKernel,
                   float,
                   double,
                   bool,
                   float16) {}