pad_op.cc 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pad_op.h"
W
wanghaoshuang 已提交
16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::Tensor;

class PadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28 29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of PadOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of PadOp should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
W
wanghaoshuang 已提交
33
    PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
W
wanghaoshuang 已提交
34 35
                      "Size of paddings should be equal to 2 * dimension size "
                      "of input tensor.");
W
wanghaoshuang 已提交
36
    std::vector<int64_t> out_dims(x_dim.size());
W
wanghaoshuang 已提交
37 38
    for (int i = 0; i < x_dim.size(); ++i) {
      out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
W
wanghaoshuang 已提交
39
    }
Q
Qiao Longfei 已提交
40
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
D
Fix bug  
dangqingqing 已提交
41 42 43
    if (out_dims[0] == x_dim[0]) {
      // Only pass LoD when the first dimension is equal between
      // output and input.
Q
Qiao Longfei 已提交
44
      ctx->ShareLoD("X", /*->*/ "Out");
D
Fix bug  
dangqingqing 已提交
45
    }
W
wanghaoshuang 已提交
46 47 48
  }
};

W
wanghaoshuang 已提交
49
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
50
 public:
Y
Yu Yang 已提交
51
  void Make() override {
W
wanghaoshuang 已提交
52 53 54 55
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddOutput("Out",
K
kexinzhao 已提交
56
              "The output of pad op. "
57
              "A tensor with the same shape as X.");
K
kexinzhao 已提交
58 59 60 61 62 63 64 65 66 67 68 69
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector<int>) "
        "A list<int> to describe the padding rules for each dimension. "
        "For 2-D image tensor, paddings=[0, 1, 2, 3] means "
        "padding 0 row to top, 1 row to bottom, 2 columns to left "
        "and 3 columns to right. Size of paddings should be equal to "
        "2 * dimension size of the input tensor.");
    AddAttr<float>("pad_value",
                   "(float, default 0.0) "
                   "The value to fill the padded areas.")
        .SetDefault(0.0f);
W
wanghaoshuang 已提交
70
    AddComment(R"DOC(
K
kexinzhao 已提交
71 72 73 74
Pad Operator.

Pad input into output, as specified by paddings and pad_value. 
The input should be a k-D tensor(k > 0 and k < 7). As an example:
W
wanghaoshuang 已提交
75 76 77 78

Given:

X = [[1, 2],
K
kexinzhao 已提交
79
     [3, 4]],
W
wanghaoshuang 已提交
80

K
kexinzhao 已提交
81
paddings = [0, 1, 1, 2],
W
wanghaoshuang 已提交
82 83 84

and

K
kexinzhao 已提交
85
pad_value = 0,
Q
Qiao Longfei 已提交
86

K
kexinzhao 已提交
87
we have:
W
wanghaoshuang 已提交
88 89 90 91

Out = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]
K
kexinzhao 已提交
92

W
wanghaoshuang 已提交
93 94 95 96 97 98 99 100
)DOC");
  }
};

class PadOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

101
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
102 103 104 105 106 107 108
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
W
wanghaoshuang 已提交
109
    }
W
wanghaoshuang 已提交
110 111 112
  }
};

113 114 115
class PadOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
Y
Yu Yang 已提交
116 117

 protected:
Y
Yu Yang 已提交
118 119
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* bind = new framework::OpDesc();
Y
Yu Yang 已提交
120 121 122 123
    bind->SetInput("X", Input("X"));
    bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    bind->SetAttrMap(Attrs());
Y
Yu Yang 已提交
124
    bind->SetType("pad_grad");
Y
Yu Yang 已提交
125
    return std::unique_ptr<framework::OpDesc>(bind);
Y
Yu Yang 已提交
126
  }
127 128
};

W
wanghaoshuang 已提交
129 130 131 132
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
133 134 135

REGISTER_OPERATOR(pad, ops::PadOp, ops::PadOpMaker, ops::PadOpGradMaker);
REGISTER_OPERATOR(pad_grad, ops::PadOpGrad);
Q
QI JUN 已提交
136 137 138 139
REGISTER_OP_CPU_KERNEL(
    pad, ops::PadKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    pad_grad, ops::PadGradKernel<paddle::platform::CPUDeviceContext, float>);