rnn.html 36.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>Recurrent Neural Network Configuration &mdash; PaddlePaddle  documentation</title>
    
Y
Yu Yang 已提交
11 12
    <link rel="stylesheet" href="../../_static/classic.css" type="text/css" />
    <link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
Y
Yu Yang 已提交
13 14 15
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
Y
Yu Yang 已提交
16
        URL_ROOT:    '../../',
Y
Yu Yang 已提交
17 18 19 20 21 22
        VERSION:     '',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
Y
Yu Yang 已提交
23 24 25
    <script type="text/javascript" src="../../_static/jquery.js"></script>
    <script type="text/javascript" src="../../_static/underscore.js"></script>
    <script type="text/javascript" src="../../_static/doctools.js"></script>
Y
Yu Yang 已提交
26
    <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
Y
Yu Yang 已提交
27 28
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html" />
    <link rel="prev" title="Lock" href="../../source/utils/thread.html" /> 
Y
Yu Yang 已提交
29 30 31 32 33 34
  </head>
  <body role="document">
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
Y
Yu Yang 已提交
35
          <a href="../../genindex.html" title="General Index"
Y
Yu Yang 已提交
36 37
             accesskey="I">index</a></li>
        <li class="right" >
Y
Yu Yang 已提交
38
          <a href="../../py-modindex.html" title="Python Module Index"
Y
Yu Yang 已提交
39
             >modules</a> |</li>
Y
Yu Yang 已提交
40 41 42
        <li class="right" >
          <a href="../../source/utils/thread.html" title="Lock"
             accesskey="P">previous</a> |</li>
Y
Yu Yang 已提交
43
        <li class="nav-item nav-item-0"><a href="../../index.html">PaddlePaddle  documentation</a> &raquo;</li> 
Y
Yu Yang 已提交
44 45 46 47 48 49 50 51 52 53
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
  <div class="section" id="recurrent-neural-network-configuration">
<h1>Recurrent Neural Network Configuration<a class="headerlink" href="#recurrent-neural-network-configuration" title="Permalink to this headline"></a></h1>
Y
Yu Yang 已提交
54 55 56 57 58 59 60
<p>This tutorial will guide you how to configure recurrent neural network in PaddlePaddle. PaddlePaddle supports highly flexible and efficient recurrent neural network configuration. In this tutorial, you will learn how to:</p>
<ul class="simple">
<li>prepare sequence data for learning recurrent neural networks.</li>
<li>configure recurrent neural network architecture.</li>
<li>generate sequence with learned recurrent neural network models.</li>
</ul>
<p>We will use vanilla recurrent neural network, and sequence to sequence model to guide you through these steps. The code of sequence to sequence model can be found at <code class="code docutils literal"><span class="pre">demo/seqToseq</span></code>.</p>
Y
Yu Yang 已提交
61 62
<div class="section" id="prepare-sequence-data">
<h2>Prepare Sequence Data<a class="headerlink" href="#prepare-sequence-data" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
63
<p>PaddlePaddle does not need any preprocessing to sequence data, such as padding. The only thing that needs to be done is to set the type of the corresponding type to input. For example, the following code snippets defines three input. All of them are sequences, and the size of them are <code class="code docutils literal"><span class="pre">src_dict</span></code>, <code class="code docutils literal"><span class="pre">trg_dict</span></code>, and <code class="code docutils literal"><span class="pre">trg_dict</span></code>:</p>
Y
Yu Yang 已提交
64 65 66
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">settings</span><span class="o">.</span><span class="n">slots</span> <span class="o">=</span> <span class="p">[</span>
  <span class="n">integer_value_sequence</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">settings</span><span class="o">.</span><span class="n">src_dict</span><span class="p">)),</span>
  <span class="n">integer_value_sequence</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">settings</span><span class="o">.</span><span class="n">trg_dict</span><span class="p">)),</span>
Y
Yu Yang 已提交
67
  <span class="n">integer_value_sequence</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">settings</span><span class="o">.</span><span class="n">trg_dict</span><span class="p">))]</span>
Y
Yu Yang 已提交
68 69
</pre></div>
</div>
Y
Yu Yang 已提交
70
<p>Then at the <code class="code docutils literal"><span class="pre">process</span></code> function, each <code class="code docutils literal"><span class="pre">yield</span></code> function will return three integer lists. Each integer list is treated as a sequence of integers:</p>
Y
Yu Yang 已提交
71 72 73
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">yield</span> <span class="n">src_ids</span><span class="p">,</span> <span class="n">trg_ids</span><span class="p">,</span> <span class="n">trg_ids_next</span>
</pre></div>
</div>
Y
Yu Yang 已提交
74
<p>For more details description of how to write a data provider, please refer to <code class="xref doc docutils literal"><span class="pre">Python</span> <span class="pre">Data</span> <span class="pre">Provider</span></code>. The full data provider file is located at <code class="code docutils literal"><span class="pre">demo/seqToseq/dataprovider.py</span></code>.</p>
Y
Yu Yang 已提交
75 76 77 78 79 80
</div>
<div class="section" id="configure-recurrent-neural-network-architecture">
<h2>Configure Recurrent Neural Network Architecture<a class="headerlink" href="#configure-recurrent-neural-network-architecture" title="Permalink to this headline"></a></h2>
<div class="section" id="simple-gated-recurrent-neural-network">
<h3>Simple Gated Recurrent Neural Network<a class="headerlink" href="#simple-gated-recurrent-neural-network" title="Permalink to this headline"></a></h3>
<p>Recurrent neural network process a sequence at each time step sequentially. An example of the architecture of LSTM is listed below.</p>
Y
Yu Yang 已提交
81 82
<img alt="../../_images/bi_lstm.jpg" class="align-center" src="../../_images/bi_lstm.jpg" />
<p>Generally speaking, a recurrent network perform the following operations from <span class="math">\(t=1\)</span> to <span class="math">\(t=T\)</span>, or reversely from <span class="math">\(t=T\)</span> to <span class="math">\(t=1\)</span>.</p>
Y
Yu Yang 已提交
83 84
<div class="math">
\[x_{t+1} = f_x(x_t), y_t = f_y(x_t)\]</div>
Y
Yu Yang 已提交
85 86
<p>where <span class="math">\(f_x(.)\)</span> is called <strong>step function</strong>, and <span class="math">\(f_y(.)\)</span> is called <strong>output function</strong>. In vanilla recurrent neural network, both of the step function and output function are very simple. However, PaddlePaddle supports the configuration of very complex architectures by modifying these two functions. We will use the sequence to sequence model with attention as an example to demonstrate how you can configure complex recurrent neural network models. In this section, we will use a simple vanilla recurrent neural network as an example of configuring simple recurrent neural network using <code class="code docutils literal"><span class="pre">recurrent_group</span></code>. Notice that if you only need to use simple RNN, GRU, or LSTM, then <code class="code docutils literal"><span class="pre">grumemory</span></code> and <code class="code docutils literal"><span class="pre">lstmemory</span></code> is recommended because they are more computationally efficient than <code class="code docutils literal"><span class="pre">recurrent_group</span></code>.</p>
<p>For vanilla RNN, at each time step, the <strong>step function</strong> is:</p>
Y
Yu Yang 已提交
87 88 89
<div class="math">
\[x_{t+1} = W_x x_t + W_i I_t + b\]</div>
<p>where <span class="math">\(x_t\)</span> is the RNN state, and <span class="math">\(I_t\)</span> is the input, <span class="math">\(W_x\)</span> and <span class="math">\(W_i\)</span> are transformation matrices for RNN states and inputs, respectively. <span class="math">\(b\)</span> is the bias.
Y
Yu Yang 已提交
90 91
Its <strong>output function</strong> simply takes <span class="math">\(x_t\)</span> as the output.</p>
<p><code class="code docutils literal"><span class="pre">recurrent_group</span></code> is the most important tools for constructing recurrent neural networks. It defines the <strong>step function</strong>, <strong>output function</strong> and the inputs of the recurrent neural network. Notice that the <code class="code docutils literal"><span class="pre">step</span></code> argument of this function implements both the <code class="code docutils literal"><span class="pre">step</span> <span class="pre">function</span></code> and the <code class="code docutils literal"><span class="pre">output</span> <span class="pre">function</span></code>:</p>
Y
Yu Yang 已提交
92 93 94 95 96 97 98 99 100 101 102
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">simple_rnn</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
               <span class="n">size</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
               <span class="n">name</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
               <span class="n">reverse</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
               <span class="n">rnn_bias_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
               <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
               <span class="n">rnn_layer_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">__rnn_step__</span><span class="p">(</span><span class="n">ipt</span><span class="p">):</span>
       <span class="n">out_mem</span> <span class="o">=</span> <span class="n">memory</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">size</span><span class="p">)</span>
       <span class="n">rnn_out</span> <span class="o">=</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="nb">input</span> <span class="o">=</span> <span class="p">[</span><span class="n">full_matrix_projection</span><span class="p">(</span><span class="n">ipt</span><span class="p">),</span>
                                      <span class="n">full_matrix_projection</span><span class="p">(</span><span class="n">out_mem</span><span class="p">)],</span>
Y
Yu Yang 已提交
103 104 105 106 107
                             <span class="n">name</span> <span class="o">=</span> <span class="n">name</span><span class="p">,</span>
                             <span class="n">bias_attr</span> <span class="o">=</span> <span class="n">rnn_bias_attr</span><span class="p">,</span>
                             <span class="n">act</span> <span class="o">=</span> <span class="n">act</span><span class="p">,</span>
                             <span class="n">layer_attr</span> <span class="o">=</span> <span class="n">rnn_layer_attr</span><span class="p">,</span>
                             <span class="n">size</span> <span class="o">=</span> <span class="n">size</span><span class="p">)</span>
Y
Yu Yang 已提交
108 109 110 111 112 113 114
       <span class="k">return</span> <span class="n">rnn_out</span>
    <span class="k">return</span> <span class="n">recurrent_group</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;</span><span class="si">%s</span><span class="s1">_recurrent_group&#39;</span> <span class="o">%</span> <span class="n">name</span><span class="p">,</span>
                           <span class="n">step</span><span class="o">=</span><span class="n">__rnn_step__</span><span class="p">,</span>
                           <span class="n">reverse</span><span class="o">=</span><span class="n">reverse</span><span class="p">,</span>
                           <span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
Y
Yu Yang 已提交
115
<p>PaddlePaddle uses memory to construct step function. <strong>Memory</strong> is the most important concept when constructing recurrent neural networks in PaddlePaddle. A memory is a state that is used recurrently in step functions, such as <span class="math">\(x_{t+1} = f_x(x_t)\)</span>. One memory contains an <strong>output</strong> and a <strong>input</strong>. The output of memory at the current time step is utilized as the input of the memory at the next time step. A memory can also has a <strong>boot layer</strong>, whose output is utilized as the initial value of the memory. In our case, the output of the gated recurrent unit is employed as the output memory. Notice that the name of the layer <code class="code docutils literal"><span class="pre">rnn_out</span></code> is the same as the name of <code class="code docutils literal"><span class="pre">out_mem</span></code>. This means the output of the layer <code class="code docutils literal"><span class="pre">rnn_out</span></code> (<span class="math">\(x_{t+1}\)</span>) is utilized as the <strong>output</strong> of <code class="code docutils literal"><span class="pre">out_mem</span></code> memory.</p>
Y
Yu Yang 已提交
116
<p>A memory can also be a sequence. In this case, at each time step, we have a sequence as the state of the recurrent neural network. This can be useful when constructing very complex recurrent neural network. Other advanced functions include defining multiple memories, and defining hierarchical recurrent neural network architecture using sub-sequence.</p>
Y
Yu Yang 已提交
117
<p>We return <code class="code docutils literal"><span class="pre">rnn_out</span></code> at the end of the function. It means that the output of the layer <code class="code docutils literal"><span class="pre">rnn_out</span></code> is utilized as the <strong>output</strong> function of the gated recurrent neural network.</p>
Y
Yu Yang 已提交
118 119 120 121
</div>
<div class="section" id="sequence-to-sequence-model-with-attention">
<h3>Sequence to Sequence Model with Attention<a class="headerlink" href="#sequence-to-sequence-model-with-attention" title="Permalink to this headline"></a></h3>
<p>We will use the sequence to sequence model with attention as an example to demonstrate how you can configure complex recurrent neural network models. An illustration of the sequence to sequence model with attention is shown in the following figure.</p>
Y
Yu Yang 已提交
122 123 124 125
<img alt="../../_images/encoder-decoder-attention-model.png" class="align-center" src="../../_images/encoder-decoder-attention-model.png" />
<p>In this model, the source sequence <span class="math">\(S = \{s_1, \dots, s_T\}\)</span> is encoded with a bidirectional gated recurrent neural networks. The hidden states of the bidirectional gated recurrent neural network <span class="math">\(H_S = \{H_1, \dots, H_T\}\)</span> is called <em>encoder vector</em> The decoder is a gated recurrent neural network. When decoding each token <span class="math">\(y_t\)</span>, the gated recurrent neural network generates a set of weights <span class="math">\(W_S^t = \{W_1^t, \dots, W_T^t\}\)</span>, which are used to compute a weighted sum of the encoder vector. The weighted sum of the encoder vector is utilized to condition the generation of the token <span class="math">\(y_t\)</span>.</p>
<p>The encoder part of the model is listed below. It calls <code class="code docutils literal"><span class="pre">grumemory</span></code> to represent gated recurrent neural network. It is the recommended way of using recurrent neural network if the network architecture is simple, because it is faster than <code class="code docutils literal"><span class="pre">recurrent_group</span></code>. We have implemented most of the commonly used recurrent neural network architectures, you can refer to <code class="xref doc docutils literal"><span class="pre">Layers</span></code>  for more details.</p>
<p>We also project the encoder vector to <code class="code docutils literal"><span class="pre">decoder_size</span></code> dimensional space, get the first instance of the backward recurrent network, and project it to <code class="code docutils literal"><span class="pre">decoder_size</span></code> dimensional space:</p>
Y
Yu Yang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># Define the data layer of the source sentence.</span>
<span class="n">src_word_id</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;source_language_word&#39;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">source_dict_dim</span><span class="p">)</span>
<span class="c1"># Calculate the word embedding of each word.</span>
<span class="n">src_embedding</span> <span class="o">=</span> <span class="n">embedding_layer</span><span class="p">(</span>
    <span class="nb">input</span><span class="o">=</span><span class="n">src_word_id</span><span class="p">,</span>
    <span class="n">size</span><span class="o">=</span><span class="n">word_vector_dim</span><span class="p">,</span>
    <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;_source_language_embedding&#39;</span><span class="p">))</span>
<span class="c1"># Apply forward recurrent neural network.</span>
<span class="n">src_forward</span> <span class="o">=</span> <span class="n">grumemory</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">src_embedding</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">encoder_size</span><span class="p">)</span>
<span class="c1"># Apply backward recurrent neural network. reverse=True means backward recurrent neural network.</span>
<span class="n">src_backward</span> <span class="o">=</span> <span class="n">grumemory</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">src_embedding</span><span class="p">,</span>
                          <span class="n">size</span><span class="o">=</span><span class="n">encoder_size</span><span class="p">,</span>
                          <span class="n">reverse</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="c1"># Mix the forward and backward parts of the recurrent neural network together.</span>
<span class="n">encoded_vector</span> <span class="o">=</span> <span class="n">concat_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">src_forward</span><span class="p">,</span> <span class="n">src_backward</span><span class="p">])</span>

<span class="c1"># Project encoding vector to decoder_size.</span>
<span class="n">encoder_proj</span> <span class="o">=</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="nb">input</span> <span class="o">=</span> <span class="p">[</span><span class="n">full_matrix_projection</span><span class="p">(</span><span class="n">encoded_vector</span><span class="p">)],</span>
                           <span class="n">size</span> <span class="o">=</span> <span class="n">decoder_size</span><span class="p">)</span>

<span class="c1"># Compute the first instance of the backward RNN.</span>
<span class="n">backward_first</span> <span class="o">=</span> <span class="n">first_seq</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">src_backward</span><span class="p">)</span>

<span class="c1"># Project the first instance of backward RNN to decoder size.</span>
<span class="n">decoder_boot</span> <span class="o">=</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">full_matrix_projection</span><span class="p">(</span><span class="n">backward_first</span><span class="p">)],</span> <span class="n">size</span><span class="o">=</span><span class="n">decoder_size</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">())</span>
</pre></div>
</div>
Y
Yu Yang 已提交
153
<p>The decoder uses <code class="code docutils literal"><span class="pre">recurrent_group</span></code> to define the recurrent neural network. The step and output functions are defined in <code class="code docutils literal"><span class="pre">gru_decoder_with_attention</span></code>:</p>
Y
Yu Yang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">trg_embedding</span> <span class="o">=</span> <span class="n">embedding_layer</span><span class="p">(</span>
    <span class="nb">input</span><span class="o">=</span><span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;target_language_word&#39;</span><span class="p">,</span>
                     <span class="n">size</span><span class="o">=</span><span class="n">target_dict_dim</span><span class="p">),</span>
    <span class="n">size</span><span class="o">=</span><span class="n">word_vector_dim</span><span class="p">,</span>
    <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;_target_language_embedding&#39;</span><span class="p">))</span>
<span class="c1"># For decoder equipped with attention mechanism, in training,</span>
<span class="c1"># target embedding (the groudtruth) is the data input,</span>
<span class="c1"># while encoded source sequence is accessed to as an unbounded memory.</span>
<span class="c1"># StaticInput means the same value is utilized at different time steps.</span>
<span class="c1"># Otherwise, it is a sequence input. Inputs at different time steps are different.</span>
<span class="c1"># All sequence inputs should have the same length.</span>
<span class="n">decoder</span> <span class="o">=</span> <span class="n">recurrent_group</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">decoder_group_name</span><span class="p">,</span>
                          <span class="n">step</span><span class="o">=</span><span class="n">gru_decoder_with_attention</span><span class="p">,</span>
                          <span class="nb">input</span><span class="o">=</span><span class="p">[</span>
                              <span class="n">StaticInput</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">encoded_vector</span><span class="p">,</span>
                                          <span class="n">is_seq</span><span class="o">=</span><span class="bp">True</span><span class="p">),</span>
                              <span class="n">StaticInput</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">encoded_proj</span><span class="p">,</span>
                                          <span class="n">is_seq</span><span class="o">=</span><span class="bp">True</span><span class="p">),</span>
                              <span class="n">trg_embedding</span>
                          <span class="p">])</span>
</pre></div>
</div>
Y
Yu Yang 已提交
176
<p>The implementation of the step function is listed as below. First, it defines the <strong>memory</strong> of the decoder network. Then it defines attention, gated recurrent unit step function, and the output function:</p>
Y
Yu Yang 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">gru_decoder_with_attention</span><span class="p">(</span><span class="n">enc_vec</span><span class="p">,</span> <span class="n">enc_proj</span><span class="p">,</span> <span class="n">current_word</span><span class="p">):</span>
    <span class="c1"># Defines the memory of the decoder.</span>
    <span class="c1"># The output of this memory is defined in gru_step.</span>
    <span class="c1"># Notice that the name of gru_step should be the same as the name of this memory.</span>
    <span class="n">decoder_mem</span> <span class="o">=</span> <span class="n">memory</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;gru_decoder&#39;</span><span class="p">,</span>
                         <span class="n">size</span><span class="o">=</span><span class="n">decoder_size</span><span class="p">,</span>
                         <span class="n">boot_layer</span><span class="o">=</span><span class="n">decoder_boot</span><span class="p">)</span>
    <span class="c1"># Compute attention weighted encoder vector.</span>
    <span class="n">context</span> <span class="o">=</span> <span class="n">simple_attention</span><span class="p">(</span><span class="n">encoded_sequence</span><span class="o">=</span><span class="n">enc_vec</span><span class="p">,</span>
                               <span class="n">encoded_proj</span><span class="o">=</span><span class="n">enc_proj</span><span class="p">,</span>
                               <span class="n">decoder_state</span><span class="o">=</span><span class="n">decoder_mem</span><span class="p">)</span>
    <span class="c1"># Mix the current word embedding and the attention weighted encoder vector.</span>
    <span class="n">decoder_inputs</span> <span class="o">=</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="n">inputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">full_matrix_projection</span><span class="p">(</span><span class="n">context</span><span class="p">),</span>
                                           <span class="n">full_matrix_projection</span><span class="p">(</span><span class="n">current_word</span><span class="p">)],</span>
                                 <span class="n">size</span> <span class="o">=</span> <span class="n">decoder_size</span> <span class="o">*</span> <span class="mi">3</span><span class="p">)</span>
    <span class="c1"># Define Gated recurrent unit recurrent neural network step function.</span>
    <span class="n">gru_step</span> <span class="o">=</span> <span class="n">gru_step_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;gru_decoder&#39;</span><span class="p">,</span>
                              <span class="nb">input</span><span class="o">=</span><span class="n">decoder_inputs</span><span class="p">,</span>
                              <span class="n">output_mem</span><span class="o">=</span><span class="n">decoder_mem</span><span class="p">,</span>
                              <span class="n">size</span><span class="o">=</span><span class="n">decoder_size</span><span class="p">)</span>
    <span class="c1"># Defines the output function.</span>
    <span class="n">out</span> <span class="o">=</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">gru_step</span><span class="p">)],</span>
                      <span class="n">size</span><span class="o">=</span><span class="n">target_dict_dim</span><span class="p">,</span>
                      <span class="n">bias_attr</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span>
                      <span class="n">act</span><span class="o">=</span><span class="n">SoftmaxActivation</span><span class="p">())</span>
    <span class="k">return</span> <span class="n">out</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="generate-sequence">
<h2>Generate Sequence<a class="headerlink" href="#generate-sequence" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
209
<p>After training the model, we can use it to generate sequences. A common practice is to use <strong>beam search</strong> to generate sequences. The following code snippets defines a beam search algorithm. Notice that <code class="code docutils literal"><span class="pre">beam_search</span></code> function assumes the output function of the <code class="code docutils literal"><span class="pre">step</span></code> returns a softmax normalized probability vector of the next token. We made the following changes to the model.</p>
Y
Yu Yang 已提交
210
<ul class="simple">
Y
Yu Yang 已提交
211 212 213 214 215 216 217 218 219
<li>use <code class="code docutils literal"><span class="pre">GeneratedInput</span></code> for trg_embedding. <code class="code docutils literal"><span class="pre">GeneratedInput</span></code> computes the embedding of the generated token at the last time step for the input at the current time step.</li>
<li>use <code class="code docutils literal"><span class="pre">beam_search</span></code> function. This function needs to set:<ul>
<li><code class="code docutils literal"><span class="pre">id_input</span></code>: the integer ID of the data, used to identify the corresponding output in the generated files.</li>
<li><code class="code docutils literal"><span class="pre">dict_file</span></code>: the dictionary file for converting word id to word.</li>
<li><code class="code docutils literal"><span class="pre">bos_id</span></code>: the start token. Every sentence starts with the start token.</li>
<li><code class="code docutils literal"><span class="pre">eos_id</span></code>: the end token. Every sentence ends with the end token.</li>
<li><code class="code docutils literal"><span class="pre">beam_size</span></code>: the beam size used in beam search.</li>
<li><code class="code docutils literal"><span class="pre">max_length</span></code>: the maximum length of the generated sentences.</li>
<li><code class="code docutils literal"><span class="pre">result_file</span></code>: the path of the generation result file.</li>
Y
Yu Yang 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
</ul>
</li>
</ul>
<p>The code is listed below:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gen_inputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">StaticInput</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">encoded_vector</span><span class="p">,</span>
                          <span class="n">is_seq</span><span class="o">=</span><span class="bp">True</span><span class="p">),</span>
              <span class="n">StaticInput</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">encoded_proj</span><span class="p">,</span>
                          <span class="n">is_seq</span><span class="o">=</span><span class="bp">True</span><span class="p">),</span> <span class="p">]</span>
<span class="c1"># In generation, decoder predicts a next target word based on</span>
<span class="c1"># the encoded source sequence and the last generated target word.</span>
<span class="c1"># The encoded source sequence (encoder&#39;s output) must be specified by</span>
<span class="c1"># StaticInput which is a read-only memory.</span>
<span class="c1"># Here, GeneratedInputs automatically fetchs the last generated word,</span>
<span class="c1"># which is initialized by a start mark, such as &lt;s&gt;.</span>
<span class="n">trg_embedding</span> <span class="o">=</span> <span class="n">GeneratedInput</span><span class="p">(</span>
    <span class="n">size</span><span class="o">=</span><span class="n">target_dict_dim</span><span class="p">,</span>
    <span class="n">embedding_name</span><span class="o">=</span><span class="s1">&#39;_target_language_embedding&#39;</span><span class="p">,</span>
    <span class="n">embedding_size</span><span class="o">=</span><span class="n">word_vector_dim</span><span class="p">)</span>
<span class="n">gen_inputs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">trg_embedding</span><span class="p">)</span>
<span class="n">beam_gen</span> <span class="o">=</span> <span class="n">beam_search</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">decoder_group_name</span><span class="p">,</span>
                       <span class="n">step</span><span class="o">=</span><span class="n">gru_decoder_with_attention</span><span class="p">,</span>
                       <span class="nb">input</span><span class="o">=</span><span class="n">gen_inputs</span><span class="p">,</span>
                       <span class="n">id_input</span><span class="o">=</span><span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;sent_id&quot;</span><span class="p">,</span>
                                           <span class="n">size</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
                       <span class="n">dict_file</span><span class="o">=</span><span class="n">trg_dict_path</span><span class="p">,</span>
                       <span class="n">bos_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="c1"># Beginnning token.</span>
                       <span class="n">eos_id</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="c1"># End of sentence token.</span>
                       <span class="n">beam_size</span><span class="o">=</span><span class="n">beam_size</span><span class="p">,</span>
                       <span class="n">max_length</span><span class="o">=</span><span class="n">max_length</span><span class="p">,</span>
                       <span class="n">result_file</span><span class="o">=</span><span class="n">gen_trans_file</span><span class="p">)</span>
<span class="n">outputs</span><span class="p">(</span><span class="n">beam_gen</span><span class="p">)</span>
</pre></div>
</div>
<p>Notice that this generation technique is only useful for decoder like generation process. If you are working on sequence tagging tasks, please refer to <code class="xref doc docutils literal"><span class="pre">Semantic</span> <span class="pre">Role</span> <span class="pre">Labeling</span> <span class="pre">Demo</span></code> for more details.</p>
Y
Yu Yang 已提交
254
<p>The full configuration file is located at <code class="code docutils literal"><span class="pre">demo/seqToseq/seqToseq_net.py</span></code>.</p>
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
Y
Yu Yang 已提交
264
  <h3><a href="../../index.html">Table Of Contents</a></h3>
Y
Yu Yang 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277
  <ul>
<li><a class="reference internal" href="#">Recurrent Neural Network Configuration</a><ul>
<li><a class="reference internal" href="#prepare-sequence-data">Prepare Sequence Data</a></li>
<li><a class="reference internal" href="#configure-recurrent-neural-network-architecture">Configure Recurrent Neural Network Architecture</a><ul>
<li><a class="reference internal" href="#simple-gated-recurrent-neural-network">Simple Gated Recurrent Neural Network</a></li>
<li><a class="reference internal" href="#sequence-to-sequence-model-with-attention">Sequence to Sequence Model with Attention</a></li>
</ul>
</li>
<li><a class="reference internal" href="#generate-sequence">Generate Sequence</a></li>
</ul>
</li>
</ul>

Y
Yu Yang 已提交
278 279 280
  <h4>Previous topic</h4>
  <p class="topless"><a href="../../source/utils/thread.html"
                        title="previous chapter">Lock</a></p>
Y
Yu Yang 已提交
281 282 283
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
Y
Yu Yang 已提交
284
      <li><a href="../../_sources/algorithm/rnn/rnn.txt"
Y
Yu Yang 已提交
285 286 287 288 289
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
Y
Yu Yang 已提交
290
    <form class="search" action="../../search.html" method="get">
Y
Yu Yang 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
Y
Yu Yang 已提交
309
          <a href="../../genindex.html" title="General Index"
Y
Yu Yang 已提交
310 311
             >index</a></li>
        <li class="right" >
Y
Yu Yang 已提交
312
          <a href="../../py-modindex.html" title="Python Module Index"
Y
Yu Yang 已提交
313
             >modules</a> |</li>
Y
Yu Yang 已提交
314 315 316
        <li class="right" >
          <a href="../../source/utils/thread.html" title="Lock"
             >previous</a> |</li>
Y
Yu Yang 已提交
317
        <li class="nav-item nav-item-0"><a href="../../index.html">PaddlePaddle  documentation</a> &raquo;</li> 
Y
Yu Yang 已提交
318 319 320 321 322 323 324 325
      </ul>
    </div>
    <div class="footer" role="contentinfo">
        &copy; Copyright 2016, PaddlePaddle developers.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.5.
    </div>
  </body>
</html>