movielens.py 7.7 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import zipfile
import re
import random
import functools
import six

import paddle
from paddle.io import Dataset
import paddle.compat as cpt
27
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
28

29 30
__all__ = []

K
Kaipeng Deng 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
age_table = [1, 18, 25, 35, 45, 50, 56]

URL = 'https://dataset.bj.bcebos.com/movielens%2Fml-1m.zip'
MD5 = 'c4d9eecfca2ab87c1945afe126590906'


class MovieInfo(object):
    """
    Movie id, title and categories information are stored in MovieInfo.
    """

    def __init__(self, index, categories, title):
        self.index = int(index)
        self.categories = categories
        self.title = title

    def value(self, categories_dict, movie_title_dict):
        """
        Get information from a movie.
        """
        return [[self.index], [categories_dict[c] for c in self.categories],
                [movie_title_dict[w.lower()] for w in self.title.split()]]

    def __str__(self):
        return "<MovieInfo id(%d), title(%s), categories(%s)>" % (
            self.index, self.title, self.categories)

    def __repr__(self):
        return self.__str__()


class UserInfo(object):
    """
    User id, gender, age, and job information are stored in UserInfo.
    """

    def __init__(self, index, gender, age, job_id):
        self.index = int(index)
        self.is_male = gender == 'M'
        self.age = age_table.index(int(age))
        self.job_id = int(job_id)

    def value(self):
        """
        Get information from a user.
        """
        return [[self.index], [0 if self.is_male else 1], [self.age],
                [self.job_id]]

    def __str__(self):
        return "<UserInfo id(%d), gender(%s), age(%d), job(%d)>" % (
82 83
            self.index, "M" if self.is_male else "F", age_table[self.age],
            self.job_id)
K
Kaipeng Deng 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    def __repr__(self):
        return str(self)


class Movielens(Dataset):
    """
    Implementation of `Movielens 1-M <https://grouplens.org/datasets/movielens/1m/>`_ dataset.

    Args:
        data_file(str): path to data tar file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train' or 'test' mode. Default 'train'.
        test_ratio(float): split ratio for test sample. Default 0.1.
        rand_seed(int): random seed. Default 0.
        download(bool): whether to download dataset automatically if
            :attr:`data_file` is not set. Default True

    Returns:
        Dataset: instance of Movielens 1-M dataset

    Examples:

        .. code-block:: python

109 110
            import paddle
            from paddle.text.datasets import Movielens
K
Kaipeng Deng 已提交
111

112 113 114
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
115

116 117
                def forward(self, category, title, rating):
                    return paddle.sum(category), paddle.sum(title), paddle.sum(rating)
K
Kaipeng Deng 已提交
118 119


120
            movielens = Movielens(mode='train')
K
Kaipeng Deng 已提交
121

122 123 124 125 126
            for i in range(10):
                category, title, rating = movielens[i][-3:]
                category = paddle.to_tensor(category)
                title = paddle.to_tensor(title)
                rating = paddle.to_tensor(rating)
K
Kaipeng Deng 已提交
127

128 129 130
                model = SimpleNet()
                category, title, rating = model(category, title, rating)
                print(category.numpy().shape, title.numpy().shape, rating.numpy().shape)
K
Kaipeng Deng 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 test_ratio=0.1,
                 rand_seed=0,
                 download=True):
        assert mode.lower() in ['train', 'test'], \
            "mode should be 'train', 'test', but got {}".format(mode)
        self.mode = mode.lower()

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
            self.data_file = _check_exists_and_download(data_file, URL, MD5,
                                                        'sentiment', download)

        self.test_ratio = test_ratio
        self.rand_seed = rand_seed

        np.random.seed(rand_seed)
        self._load_meta_info()
        self._load_data()

    def _load_meta_info(self):
        pattern = re.compile(r'^(.*)\((\d+)\)$')
        self.movie_info = dict()
        self.movie_title_dict = dict()
        self.categories_dict = dict()
        self.user_info = dict()
        with zipfile.ZipFile(self.data_file) as package:
            for info in package.infolist():
                assert isinstance(info, zipfile.ZipInfo)
                title_word_set = set()
                categories_set = set()
                with package.open('ml-1m/movies.dat') as movie_file:
                    for i, line in enumerate(movie_file):
                        line = cpt.to_text(line, encoding='latin')
                        movie_id, title, categories = line.strip().split('::')
                        categories = categories.split('|')
                        for c in categories:
                            categories_set.add(c)
                        title = pattern.match(title).group(1)
                        self.movie_info[int(movie_id)] = MovieInfo(
                            index=movie_id, categories=categories, title=title)
                        for w in title.split():
                            title_word_set.add(w.lower())

                for i, w in enumerate(title_word_set):
                    self.movie_title_dict[w] = i

                for i, c in enumerate(categories_set):
                    self.categories_dict[c] = i

                with package.open('ml-1m/users.dat') as user_file:
                    for line in user_file:
                        line = cpt.to_text(line, encoding='latin')
                        uid, gender, age, job, _ = line.strip().split("::")
191 192 193 194
                        self.user_info[int(uid)] = UserInfo(index=uid,
                                                            gender=gender,
                                                            age=age,
                                                            job_id=job)
K
Kaipeng Deng 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

    def _load_data(self):
        self.data = []
        is_test = self.mode == 'test'
        with zipfile.ZipFile(self.data_file) as package:
            with package.open('ml-1m/ratings.dat') as rating:
                for line in rating:
                    line = cpt.to_text(line, encoding='latin')
                    if (np.random.random() < self.test_ratio) == is_test:
                        uid, mov_id, rating, _ = line.strip().split("::")
                        uid = int(uid)
                        mov_id = int(mov_id)
                        rating = float(rating) * 2 - 5.0

                        mov = self.movie_info[mov_id]
                        usr = self.user_info[uid]
                        self.data.append(usr.value() + \
                                         mov.value(self.categories_dict, self.movie_title_dict) + \
                                         [[rating]])

    def __getitem__(self, idx):
        data = self.data[idx]
        return tuple([np.array(d) for d in data])

    def __len__(self):
        return len(self.data)