test_strided_slice_op.py 30.9 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from op_test import OpTest
import numpy as np
import unittest
18
import paddle.fluid as fluid
19 20 21
import paddle

paddle.enable_static()
W
wangchaochaohu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57


def strided_slice_native_forward(input, axes, starts, ends, strides):
    dim = input.ndim
    start = []
    end = []
    stride = []
    for i in range(dim):
        start.append(0)
        end.append(input.shape[i])
        stride.append(1)

    for i in range(len(axes)):
        start[axes[i]] = starts[i]
        end[axes[i]] = ends[i]
        stride[axes[i]] = strides[i]

    result = {
        1: lambda input, start, end, stride: input[start[0]:end[0]:stride[0]],
        2: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1]],
        3: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2]],
        4: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3]],
        5: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3], start[4]:end[4]:stride[4]],
        6: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3], \
                start[4]:end[4]:stride[4], start[5]:end[5]:stride[5]]
    }[dim](input, start, end, stride)

    return result


class TestStrideSliceOp(OpTest):
58

W
wangchaochaohu 已提交
59 60 61
    def setUp(self):
        self.initTestCase()
        self.op_type = 'strided_slice'
62
        self.python_api = paddle.strided_slice
63 64 65
        self.output = strided_slice_native_forward(self.input, self.axes,
                                                   self.starts, self.ends,
                                                   self.strides)
W
wangchaochaohu 已提交
66 67 68 69 70 71 72

        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
73 74
            'strides': self.strides,
            'infer_flags': self.infer_flags
W
wangchaochaohu 已提交
75 76 77
        }

    def test_check_output(self):
78
        self.check_output(check_eager=True)
W
wangchaochaohu 已提交
79 80

    def test_check_grad(self):
81
        self.check_grad(set(['Input']), 'Out', check_eager=True)
W
wangchaochaohu 已提交
82 83

    def initTestCase(self):
84
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
85 86 87 88
        self.axes = [0]
        self.starts = [-4]
        self.ends = [-3]
        self.strides = [1]
89
        self.infer_flags = [1]
W
wangchaochaohu 已提交
90 91 92


class TestStrideSliceOp1(TestStrideSliceOp):
93

W
wangchaochaohu 已提交
94
    def initTestCase(self):
Z
zhupengyang 已提交
95
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
96 97 98 99
        self.axes = [0]
        self.starts = [3]
        self.ends = [8]
        self.strides = [1]
100
        self.infer_flags = [1]
W
wangchaochaohu 已提交
101 102 103


class TestStrideSliceOp2(TestStrideSliceOp):
104

W
wangchaochaohu 已提交
105
    def initTestCase(self):
Z
zhupengyang 已提交
106
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
107 108 109 110
        self.axes = [0]
        self.starts = [5]
        self.ends = [0]
        self.strides = [-1]
111
        self.infer_flags = [1]
W
wangchaochaohu 已提交
112 113 114


class TestStrideSliceOp3(TestStrideSliceOp):
115

W
wangchaochaohu 已提交
116
    def initTestCase(self):
Z
zhupengyang 已提交
117
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
118 119 120 121
        self.axes = [0]
        self.starts = [-1]
        self.ends = [-3]
        self.strides = [-1]
122
        self.infer_flags = [1]
W
wangchaochaohu 已提交
123 124 125


class TestStrideSliceOp4(TestStrideSliceOp):
126

W
wangchaochaohu 已提交
127
    def initTestCase(self):
Z
zhupengyang 已提交
128
        self.input = np.random.rand(3, 4, 10)
W
wangchaochaohu 已提交
129 130 131 132
        self.axes = [0, 1, 2]
        self.starts = [0, -1, 0]
        self.ends = [2, -3, 5]
        self.strides = [1, -1, 1]
133
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
134 135 136


class TestStrideSliceOp5(TestStrideSliceOp):
137

W
wangchaochaohu 已提交
138
    def initTestCase(self):
Z
zhupengyang 已提交
139
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
140 141 142 143
        self.axes = [0, 1, 2]
        self.starts = [1, 0, 0]
        self.ends = [2, 1, 3]
        self.strides = [1, 1, 1]
144
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
145 146 147


class TestStrideSliceOp6(TestStrideSliceOp):
148

W
wangchaochaohu 已提交
149
    def initTestCase(self):
Z
zhupengyang 已提交
150
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
151 152 153 154
        self.axes = [0, 1, 2]
        self.starts = [1, -1, 0]
        self.ends = [2, -3, 3]
        self.strides = [1, -1, 1]
155
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
156 157 158


class TestStrideSliceOp7(TestStrideSliceOp):
159

W
wangchaochaohu 已提交
160
    def initTestCase(self):
Z
zhupengyang 已提交
161
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
162 163 164 165
        self.axes = [0, 1, 2]
        self.starts = [1, 0, 0]
        self.ends = [2, 2, 3]
        self.strides = [1, 1, 1]
166
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
167 168 169


class TestStrideSliceOp8(TestStrideSliceOp):
170

W
wangchaochaohu 已提交
171
    def initTestCase(self):
Z
zhupengyang 已提交
172
        self.input = np.random.rand(1, 100, 1)
W
wangchaochaohu 已提交
173 174 175 176
        self.axes = [1]
        self.starts = [1]
        self.ends = [2]
        self.strides = [1]
177
        self.infer_flags = [1]
W
wangchaochaohu 已提交
178 179 180


class TestStrideSliceOp9(TestStrideSliceOp):
181

W
wangchaochaohu 已提交
182
    def initTestCase(self):
Z
zhupengyang 已提交
183
        self.input = np.random.rand(1, 100, 1)
W
wangchaochaohu 已提交
184 185 186 187
        self.axes = [1]
        self.starts = [-1]
        self.ends = [-2]
        self.strides = [-1]
188
        self.infer_flags = [1]
W
wangchaochaohu 已提交
189 190 191


class TestStrideSliceOp10(TestStrideSliceOp):
192

W
wangchaochaohu 已提交
193
    def initTestCase(self):
Z
zhupengyang 已提交
194
        self.input = np.random.rand(10, 10)
W
wangchaochaohu 已提交
195 196 197 198
        self.axes = [0, 1]
        self.starts = [1, 0]
        self.ends = [2, 2]
        self.strides = [1, 1]
199
        self.infer_flags = [1, 1]
W
wangchaochaohu 已提交
200 201 202


class TestStrideSliceOp11(TestStrideSliceOp):
203

W
wangchaochaohu 已提交
204 205 206 207 208 209
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4)
        self.axes = [0, 1, 2, 3]
        self.starts = [1, 0, 0, 0]
        self.ends = [2, 2, 3, 4]
        self.strides = [1, 1, 1, 2]
210
        self.infer_flags = [1, 1, 1, 1]
W
wangchaochaohu 已提交
211 212 213


class TestStrideSliceOp12(TestStrideSliceOp):
214

W
wangchaochaohu 已提交
215 216 217 218 219 220
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4, 5)
        self.axes = [0, 1, 2, 3, 4]
        self.starts = [1, 0, 0, 0, 0]
        self.ends = [2, 2, 3, 4, 4]
        self.strides = [1, 1, 1, 1, 1]
221
        self.infer_flags = [1, 1, 1, 1]
W
wangchaochaohu 已提交
222 223 224


class TestStrideSliceOp13(TestStrideSliceOp):
225

W
wangchaochaohu 已提交
226 227 228 229 230 231
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 6, 7, 8)
        self.axes = [0, 1, 2, 3, 4, 5]
        self.starts = [1, 0, 0, 0, 1, 2]
        self.ends = [2, 2, 3, 1, 2, 8]
        self.strides = [1, 1, 1, 1, 1, 2]
232 233 234
        self.infer_flags = [1, 1, 1, 1, 1]


235
class TestStrideSliceOp14(TestStrideSliceOp):
236

237 238 239 240 241 242 243 244 245
    def initTestCase(self):
        self.input = np.random.rand(4, 4, 4, 4)
        self.axes = [1, 2, 3]
        self.starts = [-5, 0, -7]
        self.ends = [-1, 2, 4]
        self.strides = [1, 1, 1]
        self.infer_flags = [1, 1, 1]


246
class TestStrideSliceOpBool(TestStrideSliceOp):
247

248 249 250 251 252
    def test_check_grad(self):
        pass


class TestStrideSliceOpBool1D(TestStrideSliceOpBool):
253

254 255 256 257 258 259 260 261 262 263
    def initTestCase(self):
        self.input = np.random.rand(100).astype("bool")
        self.axes = [0]
        self.starts = [3]
        self.ends = [8]
        self.strides = [1]
        self.infer_flags = [1]


class TestStrideSliceOpBool2D(TestStrideSliceOpBool):
264

265 266 267 268 269 270 271 272 273 274
    def initTestCase(self):
        self.input = np.random.rand(10, 10).astype("bool")
        self.axes = [0, 1]
        self.starts = [1, 0]
        self.ends = [2, 2]
        self.strides = [1, 1]
        self.infer_flags = [1, 1]


class TestStrideSliceOpBool3D(TestStrideSliceOpBool):
275

276 277 278 279 280 281 282 283 284 285
    def initTestCase(self):
        self.input = np.random.rand(3, 4, 10).astype("bool")
        self.axes = [0, 1, 2]
        self.starts = [0, -1, 0]
        self.ends = [2, -3, 5]
        self.strides = [1, -1, 1]
        self.infer_flags = [1, 1, 1]


class TestStrideSliceOpBool4D(TestStrideSliceOpBool):
286

287 288 289 290 291 292 293 294 295 296
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4).astype("bool")
        self.axes = [0, 1, 2, 3]
        self.starts = [1, 0, 0, 0]
        self.ends = [2, 2, 3, 4]
        self.strides = [1, 1, 1, 2]
        self.infer_flags = [1, 1, 1, 1]


class TestStrideSliceOpBool5D(TestStrideSliceOpBool):
297

298 299 300 301 302 303 304 305 306 307
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4, 5).astype("bool")
        self.axes = [0, 1, 2, 3, 4]
        self.starts = [1, 0, 0, 0, 0]
        self.ends = [2, 2, 3, 4, 4]
        self.strides = [1, 1, 1, 1, 1]
        self.infer_flags = [1, 1, 1, 1]


class TestStrideSliceOpBool6D(TestStrideSliceOpBool):
308

309 310 311 312 313 314 315 316 317
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 6, 7, 8).astype("bool")
        self.axes = [0, 1, 2, 3, 4, 5]
        self.starts = [1, 0, 0, 0, 1, 2]
        self.ends = [2, 2, 3, 1, 2, 8]
        self.strides = [1, 1, 1, 1, 1, 2]
        self.infer_flags = [1, 1, 1, 1, 1]


318
class TestStridedSliceOp_starts_ListTensor(OpTest):
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts_infer,
            'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags
        }

    def config(self):
340
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
341 342 343 344 345
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [1, -1, 1]
346 347 348
        self.output = strided_slice_native_forward(self.input, self.axes,
                                                   self.starts, self.ends,
                                                   self.strides)
349 350 351 352 353 354 355 356 357 358 359

        self.starts_infer = [1, 10, 2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_ends_ListTensor(OpTest):
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
            ends_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {'Input': self.input, 'EndsTensorList': ends_tensor}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends_infer,
            'strides': self.strides,
            'infer_flags': self.infer_flags
        }

    def config(self):
381
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
382 383 384 385 386
        self.starts = [1, 0, 0]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 2]
        self.infer_flags = [1, -1, 1]
387 388 389
        self.output = strided_slice_native_forward(self.input, self.axes,
                                                   self.starts, self.ends,
                                                   self.strides)
390 391 392 393 394 395 396 397 398 399 400

        self.ends_infer = [3, 1, 4]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_starts_Tensor(OpTest):
401

402 403 404 405 406
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
407
            "StartsTensor": np.array(self.starts, dtype="int32")
408 409 410 411 412 413 414 415 416 417 418
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
419
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
420 421 422 423 424
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
425 426 427
        self.output = strided_slice_native_forward(self.input, self.axes,
                                                   self.starts, self.ends,
                                                   self.strides)
428 429 430 431 432 433 434 435 436

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_ends_Tensor(OpTest):
437

438 439 440 441 442
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
443
            "EndsTensor": np.array(self.ends, dtype="int32")
444 445 446 447 448 449 450 451 452 453 454
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            #'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
455
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
456 457 458 459 460
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
461 462 463
        self.output = strided_slice_native_forward(self.input, self.axes,
                                                   self.starts, self.ends,
                                                   self.strides)
464 465 466 467 468 469 470 471 472

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_listTensor_Tensor(OpTest):
473

474 475 476 477 478 479 480 481 482 483
    def setUp(self):
        self.config()
        ends_tensor = []
        for index, ele in enumerate(self.ends):
            ends_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))
        self.op_type = "strided_slice"

        self.inputs = {
            'Input': self.input,
484
            "StartsTensor": np.array(self.starts, dtype="int32"),
485 486 487 488 489 490 491 492 493 494 495 496
            "EndsTensorList": ends_tensor
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            #'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
497
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
498 499 500 501 502
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
503 504 505
        self.output = strided_slice_native_forward(self.input, self.axes,
                                                   self.starts, self.ends,
                                                   self.strides)
506 507 508 509 510 511 512 513 514

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_strides_Tensor(OpTest):
515

516 517 518 519 520
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
521
            "StridesTensor": np.array(self.strides, dtype="int32")
522 523 524 525 526 527 528 529 530 531 532
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            #'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
533
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
534 535 536 537 538
        self.starts = [1, -1, 2]
        self.ends = [2, 0, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, -1, 1]
        self.infer_flags = [-1, -1, -1]
539 540 541
        self.output = strided_slice_native_forward(self.input, self.axes,
                                                   self.starts, self.ends,
                                                   self.strides)
542 543 544 545 546 547 548 549 550

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


# Test python API
551
class TestStridedSliceAPI(unittest.TestCase):
552

553
    def test_1(self):
554
        input = np.random.random([3, 4, 5, 6]).astype("float64")
555 556
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
        minus_3 = fluid.layers.fill_constant([1], "int32", -3)
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        starts = fluid.layers.data(name='starts',
                                   shape=[3],
                                   dtype='int32',
                                   append_batch_size=False)
        ends = fluid.layers.data(name='ends',
                                 shape=[3],
                                 dtype='int32',
                                 append_batch_size=False)
        strides = fluid.layers.data(name='strides',
                                    shape=[3],
                                    dtype='int32',
                                    append_batch_size=False)

        x = fluid.layers.data(name="x",
                              shape=[3, 4, 5, 6],
                              append_batch_size=False,
                              dtype="float64")
        out_1 = paddle.strided_slice(x,
                                     axes=[0, 1, 2],
                                     starts=[-3, 0, 2],
                                     ends=[3, 100, -1],
                                     strides=[1, 1, 1])
        out_2 = paddle.strided_slice(x,
                                     axes=[0, 1, 3],
                                     starts=[minus_3, 0, 2],
                                     ends=[3, 100, -1],
                                     strides=[1, 1, 1])
        out_3 = paddle.strided_slice(x,
                                     axes=[0, 1, 3],
                                     starts=[minus_3, 0, 2],
                                     ends=[3, 100, minus_1],
                                     strides=[1, 1, 1])
        out_4 = paddle.strided_slice(x,
                                     axes=[0, 1, 2],
                                     starts=starts,
                                     ends=ends,
                                     strides=strides)
594

595 596 597
        out_5 = x[-3:3, 0:100:2, -1:2:-1]
        out_6 = x[minus_3:3:1, 0:100:2, :, minus_1:2:minus_1]
        out_7 = x[minus_1, 0:100:2, :, -1:2:-1]
598 599 600 601 602 603 604

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
605
                'ends': np.array([3, 2147483648, -1]).astype("int64"),
606 607 608 609 610 611 612
                'strides': np.array([1, 1, 1]).astype("int32")
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
613 614 615
        assert np.array_equal(res_5, input[-3:3, 0:100:2, -1:2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100:2, :, -1:2:-1])
        assert np.array_equal(res_7, input[-1, 0:100:2, :, -1:2:-1])
W
wangchaochaohu 已提交
616

617 618 619 620 621 622
    def test_dygraph_op(self):
        x = paddle.zeros(shape=[3, 4, 5, 6], dtype="float32")
        axes = [1, 2, 3]
        starts = [-3, 0, 2]
        ends = [3, 2, 4]
        strides_1 = [1, 1, 1]
623 624 625 626 627
        sliced_1 = paddle.strided_slice(x,
                                        axes=axes,
                                        starts=starts,
                                        ends=ends,
                                        strides=strides_1)
628 629
        assert sliced_1.shape == (3, 2, 2, 2)

630 631 632 633
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "Cannot use CUDAPinnedPlace in CPU only version")
    def test_cuda_pinned_place(self):
        with paddle.fluid.dygraph.guard():
634 635
            x = paddle.to_tensor(np.random.randn(2, 10),
                                 place=paddle.CUDAPinnedPlace())
636 637
            self.assertTrue(x.place.is_cuda_pinned_place())
            y = x[:, ::2]
638
            self.assertFalse(x.place.is_cuda_pinned_place())
639 640
            self.assertFalse(y.place.is_cuda_pinned_place())

W
wangchaochaohu 已提交
641

642
class ArrayLayer(paddle.nn.Layer):
643

644 645 646 647 648 649
    def __init__(self, input_size=224, output_size=10, array_size=1):
        super(ArrayLayer, self).__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.array_size = array_size
        for i in range(self.array_size):
650
            setattr(self, self.create_name(i),
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
                    paddle.nn.Linear(input_size, output_size))

    def create_name(self, index):
        return 'linear_' + str(index)

    def forward(self, inps):
        array = []
        for i in range(self.array_size):
            linear = getattr(self, self.create_name(i))
            array.append(linear(inps))

        tensor_array = self.create_tensor_array(array)

        tensor_array = self.array_slice(tensor_array)

        array1 = paddle.concat(tensor_array)
        array2 = paddle.concat(tensor_array[::-1])
        return array1 + array2 * array2

    def get_all_grads(self, param_name='weight'):
        grads = []
        for i in range(self.array_size):
            linear = getattr(self, self.create_name(i))
            param = getattr(linear, param_name)

            g = param.grad
            if g is not None:
                g = g.numpy()

            grads.append(g)

        return grads

    def clear_all_grad(self):
        param_names = ['weight', 'bias']
        for i in range(self.array_size):
            linear = getattr(self, self.create_name(i))
            for p in param_names:
                param = getattr(linear, p)
                param.clear_gradient()

    def array_slice(self, array):
        return array

    def create_tensor_array(self, tensors):
        tensor_array = None
        for i, tensor in enumerate(tensors):
            index = paddle.full(shape=[1], dtype='int64', fill_value=i)
            if tensor_array is None:
                tensor_array = paddle.tensor.array_write(tensor, i=index)
            else:
                paddle.tensor.array_write(tensor, i=index, array=tensor_array)
        return tensor_array


class TestStridedSliceTensorArray(unittest.TestCase):
707

708 709 710 711 712 713 714 715 716 717 718 719 720
    def setUp(self):
        paddle.disable_static()

    def grad_equal(self, g1, g2):
        if g1 is None:
            g1 = np.zeros_like(g2)
        if g2 is None:
            g2 = np.zeros_like(g1)
        return np.array_equal(g1, g2)

    def is_grads_equal(self, g1, g2):
        for i, g in enumerate(g1):

721 722 723
            self.assertTrue(self.grad_equal(g, g2[i]),
                            msg="gradient_1:\n{} \ngradient_2:\n{}".format(
                                g, g2))
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

    def is_grads_equal_zeros(self, grads):
        for g in grads:
            self.assertTrue(
                self.grad_equal(np.zeros_like(g), g),
                msg="The gradient should be zeros, but received \n{}".format(g))

    def create_case(self, net):
        inps1 = paddle.randn([1, net.input_size], dtype='float32')
        inps2 = inps1.detach().clone()
        l1 = net(inps1)
        s1 = l1.numpy()
        l1.sum().backward()
        grads_dy = net.get_all_grads()
        net.clear_all_grad()
        grads_zeros = net.get_all_grads()

        self.is_grads_equal_zeros(grads_zeros)

        func = paddle.jit.to_static(net.forward)
        l2 = func(inps2)
        s2 = l2.numpy()
        l2.sum().backward()
        grads_static = net.get_all_grads()
        net.clear_all_grad()
749
        # compare result of dygraph and static
750 751 752 753 754 755 756 757 758 759 760
        self.is_grads_equal(grads_static, grads_dy)
        self.assertTrue(
            np.array_equal(s1, s2),
            msg="dygraph graph result:\n{} \nstatic dygraph result:\n{}".format(
                l1.numpy(), l2.numpy()))

    def test_strided_slice_tensor_array_cuda_pinned_place(self):
        if paddle.device.is_compiled_with_cuda():
            with paddle.fluid.dygraph.guard():

                class Simple(paddle.nn.Layer):
761

762 763 764 765 766 767
                    def __init__(self):
                        super(Simple, self).__init__()

                    def forward(self, inps):
                        tensor_array = None
                        for i, tensor in enumerate(inps):
768 769 770
                            index = paddle.full(shape=[1],
                                                dtype='int64',
                                                fill_value=i)
771 772 773 774
                            if tensor_array is None:
                                tensor_array = paddle.tensor.array_write(
                                    tensor, i=index)
                            else:
775 776 777
                                paddle.tensor.array_write(tensor,
                                                          i=index,
                                                          array=tensor_array)
778 779 780 781 782 783 784 785

                        array1 = paddle.concat(tensor_array)
                        array2 = paddle.concat(tensor_array[::-1])
                        return array1 + array2 * array2

                net = Simple()
                func = paddle.jit.to_static(net.forward)

786 787 788 789 790 791
                inps1 = paddle.to_tensor(np.random.randn(2, 10),
                                         place=paddle.CUDAPinnedPlace(),
                                         stop_gradient=False)
                inps2 = paddle.to_tensor(np.random.randn(2, 10),
                                         place=paddle.CUDAPinnedPlace(),
                                         stop_gradient=False)
792 793 794 795 796 797 798 799 800

                self.assertTrue(inps1.place.is_cuda_pinned_place())
                self.assertTrue(inps2.place.is_cuda_pinned_place())

                result = func([inps1, inps2])

                self.assertFalse(result.place.is_cuda_pinned_place())

    def test_strided_slice_tensor_array(self):
801

802
        class Net01(ArrayLayer):
803

804 805 806
            def array_slice(self, tensors):
                return tensors[::-1]

807
        self.create_case(Net01(array_size=10))
808

809
        class Net02(ArrayLayer):
810

811 812 813
            def array_slice(self, tensors):
                return tensors[::-2]

814
        self.create_case(Net02(input_size=112, array_size=11))
815

816
        class Net03(ArrayLayer):
817

818 819 820
            def array_slice(self, tensors):
                return tensors[::-3]

821
        self.create_case(Net03(input_size=112, array_size=9))
822

823
        class Net04(ArrayLayer):
824

825 826 827
            def array_slice(self, tensors):
                return tensors[1::-4]

828
        self.create_case(Net04(input_size=112, array_size=9))
829

830
        class Net05(ArrayLayer):
831

832 833 834
            def array_slice(self, tensors):
                return tensors[:7:-4]

835
        self.create_case(Net05(input_size=112, array_size=9))
836

837
        class Net06(ArrayLayer):
838

839 840 841
            def array_slice(self, tensors):
                return tensors[8:0:-4]

842
        self.create_case(Net06(input_size=112, array_size=9))
843

844
        class Net07(ArrayLayer):
845

846 847 848
            def array_slice(self, tensors):
                return tensors[8:1:-4]

849
        self.create_case(Net07(input_size=112, array_size=9))
850

851
        class Net08(ArrayLayer):
852

853 854 855
            def array_slice(self, tensors):
                return tensors[::2]

856
        self.create_case(Net08(input_size=112, array_size=11))
857

858
        class Net09(ArrayLayer):
859

860 861 862
            def array_slice(self, tensors):
                return tensors[::3]

863
        self.create_case(Net09(input_size=112, array_size=9))
864

865
        class Net10(ArrayLayer):
866

867 868 869
            def array_slice(self, tensors):
                return tensors[1::4]

870
        self.create_case(Net10(input_size=112, array_size=9))
871

872
        class Net11(ArrayLayer):
873

874 875 876
            def array_slice(self, tensors):
                return tensors[:8:4]

877
        self.create_case(Net11(input_size=112, array_size=9))
878

879
        class Net12(ArrayLayer):
880

881 882 883
            def array_slice(self, tensors):
                return tensors[1:8:4]

884
        self.create_case(Net12(input_size=112, array_size=9))
885

886
        class Net13(ArrayLayer):
887

888 889 890
            def array_slice(self, tensors):
                return tensors[8:10:4]

891
        self.create_case(Net13(input_size=112, array_size=13))
892

893
        class Net14(ArrayLayer):
894

895 896 897
            def array_slice(self, tensors):
                return tensors[3:10:4]

898
        self.create_case(Net14(input_size=112, array_size=13))
899

900
        class Net15(ArrayLayer):
901

902 903 904
            def array_slice(self, tensors):
                return tensors[2:10:4]

905
        self.create_case(Net15(input_size=112, array_size=13))
906

907
        class Net16(ArrayLayer):
908

909 910 911
            def array_slice(self, tensors):
                return tensors[3:10:3]

912
        self.create_case(Net16(input_size=112, array_size=13))
913

914
        class Net17(ArrayLayer):
915

916 917 918
            def array_slice(self, tensors):
                return tensors[3:15:3]

919
        self.create_case(Net17(input_size=112, array_size=13))
920

921
        class Net18(ArrayLayer):
922

923 924 925
            def array_slice(self, tensors):
                return tensors[0:15:3]

926
        self.create_case(Net18(input_size=112, array_size=13))
927

928
        class Net19(ArrayLayer):
929

930 931 932
            def array_slice(self, tensors):
                return tensors[-1:-5:-3]

933
        self.create_case(Net19(input_size=112, array_size=13))
934

935
        class Net20(ArrayLayer):
936

937 938 939
            def array_slice(self, tensors):
                return tensors[-1:-6:-3]

940
        self.create_case(Net20(input_size=112, array_size=13))
941

942
        class Net21(ArrayLayer):
943

944 945 946
            def array_slice(self, tensors):
                return tensors[-3:-6:-3]

947
        self.create_case(Net21(input_size=112, array_size=13))
948

949
        class Net22(ArrayLayer):
950

951 952 953
            def array_slice(self, tensors):
                return tensors[-5:-1:3]

954
        self.create_case(Net22(input_size=112, array_size=13))
955

956
        class Net23(ArrayLayer):
957

958 959 960
            def array_slice(self, tensors):
                return tensors[-6:-1:3]

961
        self.create_case(Net23(input_size=112, array_size=13))
962

963
        class Net24(ArrayLayer):
964

965 966 967
            def array_slice(self, tensors):
                return tensors[-6:-3:3]

968
        self.create_case(Net24(input_size=112, array_size=13))
969

970
        class Net25(ArrayLayer):
971

972 973 974
            def array_slice(self, tensors):
                return tensors[0::3]

975
        self.create_case(Net25(input_size=112, array_size=13))
976

977
        class Net26(ArrayLayer):
978

979 980 981
            def array_slice(self, tensors):
                return tensors[-60:20:3]

982
        self.create_case(Net26(input_size=112, array_size=13))
983

984
        class Net27(ArrayLayer):
985

986 987 988
            def array_slice(self, tensors):
                return tensors[-3:-60:-3]

989
        self.create_case(Net27(input_size=112, array_size=13))
990 991


W
wangchaochaohu 已提交
992 993
if __name__ == "__main__":
    unittest.main()