test_row_conv_op.py 6.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

S
Siddharth Goyal 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
from paddle import fluid
S
Siddharth Goyal 已提交
21 22 23 24


def row_conv_forward(x, lod, wt):
    out = np.zeros_like(x)
25 26 27 28
    num_sequences = len(lod[0])
    seq_info = [0]
    for seq_len in lod[0]:
        seq_info.append(seq_info[-1] + seq_len)
S
Siddharth Goyal 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    context_length = wt.shape[0]

    for i in range(num_sequences):  # loop over number of sequences
        start = seq_info[i]
        end = seq_info[i + 1]
        curinput = x[start:end, :]
        curoutput = out[start:end, :]

        cur_timesteps = end - start
        for j in range(cur_timesteps):  # loop over different timesteps
            for k in range(context_length):
                if j + k >= cur_timesteps:
                    continue
                curoutput[j, :] += curinput[j + k, :] * wt[k, :]

    return out


class TestRowConvOp1(OpTest):
48

S
Siddharth Goyal 已提交
49 50 51
    def setUp(self):

        self.op_type = "row_conv"
52 53
        lod = [[2, 3, 2]]
        T = sum(lod[0])
S
Siddharth Goyal 已提交
54
        D = 16
55
        context_length = 8
S
Siddharth Goyal 已提交
56 57 58 59 60 61 62 63 64

        x = np.random.random((T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': (x, lod), 'Filter': wt}

        out = row_conv_forward(x, lod, wt)
        self.outputs = {'Out': (out, lod)}

    def test_check_output(self):
H
hong 已提交
65
        self.check_output(check_dygraph=False)
S
Siddharth Goyal 已提交
66 67

    def test_check_grad_normal(self):
68
        self.check_grad(['X', 'Filter'], 'Out', check_dygraph=False)
S
Siddharth Goyal 已提交
69 70

    def test_check_grad_ignore_x(self):
71 72 73 74
        self.check_grad(['Filter'],
                        'Out',
                        no_grad_set=set('X'),
                        check_dygraph=False)
S
Siddharth Goyal 已提交
75 76

    def test_check_grad_ignore_wt(self):
77 78 79 80
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Filter'),
                        check_dygraph=False)
S
Siddharth Goyal 已提交
81 82 83


class TestRowConvOp2(OpTest):
84

S
Siddharth Goyal 已提交
85 86 87
    def setUp(self):

        self.op_type = "row_conv"
88 89
        lod = [[20, 30, 50]]
        T = sum(lod[0])
S
Siddharth Goyal 已提交
90 91 92 93 94 95 96 97 98 99 100
        D = 35
        context_length = 35

        x = np.random.random((T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': (x, lod), 'Filter': wt}

        out = row_conv_forward(x, lod, wt)
        self.outputs = {'Out': (out, lod)}

    def test_check_output(self):
H
hong 已提交
101
        self.check_output(check_dygraph=False)
S
Siddharth Goyal 已提交
102 103

    #max_relative_error is increased from 0.05 to 0.06 as for higher
104
    #dimensional input, the dX on CPU for some values has max_rel_error
S
Siddharth Goyal 已提交
105 106
    #slightly more than 0.05
    def test_check_grad_normal(self):
107 108 109 110
        self.check_grad(['X', 'Filter'],
                        'Out',
                        max_relative_error=0.06,
                        check_dygraph=False)
S
Siddharth Goyal 已提交
111 112

    def test_check_grad_ignore_x(self):
113 114 115 116 117
        self.check_grad(['Filter'],
                        'Out',
                        max_relative_error=0.06,
                        no_grad_set=set('X'),
                        check_dygraph=False)
S
Siddharth Goyal 已提交
118 119

    def test_check_grad_ignore_wt(self):
120 121 122 123 124
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.06,
                        no_grad_set=set('Filter'),
                        check_dygraph=False)
S
Siddharth Goyal 已提交
125 126


127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
def row_conv_foward_Tensor(x, wt):
    out = np.zeros_like(x)
    num_sequence = x.shape[0]
    timesteps = x.shape[1]
    context_length = wt.shape[0]
    for i in range(num_sequence):
        cur_in = x[i:i + 1, :][0]
        cur_out = out[i:i + 1, :][0]
        for j in range(timesteps):
            for k in range(context_length):
                if j + k >= timesteps:
                    continue
                cur_out[j, :] += cur_in[j + k, :] * wt[k, :]
    return out


class TestRowOpWithTensorInput(OpTest):
144

145 146
    def setUp(self):
        self.op_type = "row_conv"
147
        length = [1, 2, 3]
148 149
        B = 2
        T = sum(length)
150 151
        D = 20
        context_length = 6
152 153 154 155 156 157 158 159 160

        x = np.random.random((B, T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': x, 'Filter': wt}

        out = row_conv_foward_Tensor(x, wt)
        self.outputs = {'Out': out}

    def test_check_output(self):
H
hong 已提交
161
        self.check_output(check_dygraph=False)
162 163

    def test_check_grad_ignore_x(self):
164 165 166 167
        self.check_grad(['Filter'],
                        'Out',
                        no_grad_set=set('X'),
                        check_dygraph=False)
168 169

    def test_check_grad_normal(self):
170
        self.check_grad(['X', 'Filter'], 'Out', check_dygraph=False)
171 172

    def test_check_grad_ignore_wt(self):
173 174 175 176
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Filter'),
                        check_dygraph=False)
177 178


179
class TestRowConvLayer(unittest.TestCase):
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    def setUp(self):
        self.B = 2
        self.T = 6
        self.C = 20
        self.context_length = 6

        self.x = np.random.random((self.B, self.T, self.C)).astype("float32")
        self.w = np.random.random(
            (self.context_length, self.C)).astype("float32")
        self.out = row_conv_foward_Tensor(self.x, self.w)

    def check_identity(self):
        start = fluid.Program()
        main = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data("x", (-1, -1, self.C), "float32")
                out = fluid.layers.row_conv(
                    x,
                    self.context_length,
                    param_attr=fluid.initializer.NumpyArrayInitializer(self.w))
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(start)
        out_np, = exe.run(main, feed={'x': self.x}, fetch_list=[out])

        np.testing.assert_allclose(out_np, self.out)


S
Siddharth Goyal 已提交
210 211
if __name__ == '__main__':
    unittest.main()