test_nn_grad.py 21.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

20
import paddle
21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
26

27
paddle.enable_static()
28 29


30
class TestSliceOpDoubleGradCheck(unittest.TestCase):
31

32
    @prog_scope()
33 34 35
    def func(self, place):
        self.config()

36 37 38 39 40 41 42 43
        out = fluid.layers.slice(self.inputs,
                                 axes=self.axes,
                                 starts=self.starts,
                                 ends=self.ends)
        gradient_checker.double_grad_check([self.inputs],
                                           out,
                                           x_init=self.x_arr,
                                           place=place)
44 45 46 47 48 49

    def config(self):
        self.starts = [1, 0, -1]
        self.ends = [3, 3, 6]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 4, 5, 2]).astype("float64")
50 51 52
        self.inputs = layers.create_parameter(dtype="float64",
                                              shape=[3, 4, 5, 2],
                                              name='x')
53 54 55 56 57 58 59 60 61 62

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.func(place)


class TestSliceOpDoubleGradCheckCase3(TestSliceOpDoubleGradCheck):
63

64 65 66 67 68
    def config(self):
        self.starts = [1, -1, 1]
        self.ends = [3, 3, 3]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 3, 3]).astype("float64")
69 70 71
        self.inputs = layers.create_parameter(dtype="float64",
                                              shape=[3, 3, 3],
                                              name='x3')
72 73


L
lvmengsi 已提交
74
class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
75

L
lvmengsi 已提交
76 77 78 79 80 81 82 83 84 85 86
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_mean(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

87 88 89 90 91
        gradient_checker.double_grad_check([x],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
L
lvmengsi 已提交
92 93 94 95 96 97 98 99 100

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


101
class TestReduceSumWithDimDoubleGradCheck(unittest.TestCase):
102

103 104 105 106 107 108 109 110 111 112 113
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_sum(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

114 115 116 117 118
        gradient_checker.double_grad_check([x],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
119

120 121 122 123 124 125 126 127
    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


128
class TestReshapeDoubleGradCheck(unittest.TestCase):
129

L
lilong12 已提交
130 131 132 133 134 135 136 137 138 139 140 141
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        expand_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.expand(x, expand_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

142 143 144 145 146
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
L
lilong12 已提交
147 148 149 150 151 152 153 154 155 156

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandDoubleGradCheck(unittest.TestCase):
157

158 159 160 161 162 163 164 165 166 167 168 169
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        new_shape = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.reshape(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

170 171 172 173 174
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
175 176 177 178 179 180 181 182 183

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


184
class TestTileDoubleGradCheck(unittest.TestCase):
185

186 187 188
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [4, 9])

189 190 191 192 193 194 195 196 197 198 199 200
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        repeat_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.tile(x, repeat_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

201 202 203 204 205 206 207 208 209
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.tile_wrapper, [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
210 211 212 213 214 215 216 217 218 219

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandV2DoubleGradCheck(unittest.TestCase):
220

221 222 223
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [4, 12])

224 225 226 227 228 229 230 231 232 233 234 235
    @prog_scope()
    def func(self, place):
        x_shape = [1, 12]
        new_shape = [4, 12]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.expand(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

236 237 238 239 240 241 242 243 244
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.expand_wrapper, [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
245 246 247 248 249 250 251 252 253

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


254
class TestSqueezeDoubleGradCheck(unittest.TestCase):
255

256 257 258 259
    def squeeze_warpper(self, x):
        axes = [0, 2]
        return paddle.squeeze(x[0], axes)

260 261 262 263 264 265 266 267 268 269 270 271
    @prog_scope()
    def func(self, place):
        x_shape = [1, 3, 1, 40]
        axes = [0, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.squeeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

272 273 274 275 276 277 278 279 280 281
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.squeeze_warpper,
                                                       [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
282 283 284 285 286 287 288 289 290 291

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestUnsqueezeDoubleGradCheck(unittest.TestCase):
292

293 294 295 296
    def unsqueeze_wrapper(self, x):
        axes = [1, 2]
        return paddle.unsqueeze(x[0], axes)

297 298 299 300 301 302 303 304 305 306 307 308
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        axes = [1, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.unsqueeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

309 310 311 312 313 314 315 316 317 318
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.unsqueeze_wrapper,
                                                       [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
319 320 321 322 323 324 325 326 327

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qingqing01 已提交
328
class TestClipDoubleGradCheck(unittest.TestCase):
329

330 331 332
    def clip_wrapper(self, x):
        return paddle.clip(x[0], min=-1., max=1.)

Q
qingqing01 已提交
333 334 335 336 337 338 339 340 341 342 343
    @prog_scope()
    def func(self, place):
        x_shape = [2, 4, 10]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.clip(x, min=-1., max=1.)
        x_arr = np.random.uniform(-5., 5., x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)
344 345 346 347
        gradient_checker.double_grad_check_for_dygraph(self.clip_wrapper, [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
Q
qingqing01 已提交
348 349 350 351 352 353 354 355 356

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


357
class TestTransposeDoubleGradCheck(unittest.TestCase):
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        perm = [1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTransposeDoubleGradCheckCase1(unittest.TestCase):
381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        perm = [0, 2, 3, 1]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
ceci3 已提交
403
class TestConstantPadDoubleGradCheck(unittest.TestCase):
404

405 406 407 408
    def pad_wrapper(self, x):
        pad = [1, 1, 1, 1]
        return paddle.nn.functional.pad(x[0], pad)

C
ceci3 已提交
409 410 411 412 413 414 415 416 417 418 419 420
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

421 422 423 424 425 426 427 428 429
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.pad_wrapper, [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
C
ceci3 已提交
430 431 432 433 434 435 436 437 438 439

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConstantPadDoubleGradCheckCase1(TestConstantPadDoubleGradCheck):
440

C
ceci3 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 0, 1, 0, 1, 0, 1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)


class TestConcatDoubleGradCheck(unittest.TestCase):
456

457 458 459
    def concat_wrapper(self, x):
        return paddle.concat(x, axis=0)

C
ceci3 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        dtype = np.float64

        x1 = layers.data('x', x_shape, False, dtype)
        x2 = layers.data('x', x_shape, False, dtype)
        x1.persistable = True
        x2.persistable = True
        out = paddle.concat([x1, x2], axis=0)
        x2_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        x1_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

474 475 476 477 478 479 480 481 482
        gradient_checker.double_grad_check([x1, x2],
                                           out,
                                           x_init=[x1_arr, x2_arr],
                                           place=place)
        gradient_checker.double_grad_check_for_dygraph(self.concat_wrapper,
                                                       [x1, x2],
                                                       out,
                                                       x_init=[x1_arr, x2_arr],
                                                       place=place)
C
ceci3 已提交
483 484 485 486 487 488 489 490 491

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


492
class TestAvgPool2DDoubleGradCheckCase1(unittest.TestCase):
493

494 495
    @prog_scope()
    def func(self, place):
496 497 498 499
        input_NCHW = fluid.layers.data(name="input_NCHW",
                                       shape=[2, 3, 5, 5],
                                       append_batch_size=False,
                                       dtype="float32")
500 501 502 503 504

        input_NCHW.persistable = True
        y = layers.pool2d(input_NCHW, pool_size=2, pool_type="avg")
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

505 506 507 508 509
        gradient_checker.double_grad_check([input_NCHW],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=0.05)
510 511 512 513 514 515 516 517 518 519

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase2(unittest.TestCase):
520

521
    def pool2d_wrapper(self, x):
522 523 524
        return paddle.nn.functional.avg_pool2d(x[0],
                                               kernel_size=2,
                                               data_format="NHWC")
525

526 527
    @prog_scope()
    def func(self, place):
528 529 530 531
        input_NHWC = fluid.layers.data(name="input_NHWC",
                                       shape=[2, 5, 5, 3],
                                       append_batch_size=False,
                                       dtype="float32")
532 533

        input_NHWC.persistable = True
534 535 536
        y = paddle.nn.functional.avg_pool2d(input_NHWC,
                                            kernel_size=2,
                                            data_format="NHWC")
537 538
        x_arr = np.random.uniform(-1, 1, [2, 5, 5, 3]).astype(np.float32)

539 540 541 542 543
        gradient_checker.double_grad_check([input_NHWC],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=0.05)
544

545 546 547 548 549
        gradient_checker.double_grad_check_for_dygraph(self.pool2d_wrapper,
                                                       [input_NHWC],
                                                       y,
                                                       x_init=x_arr,
                                                       place=place)
550

551 552 553 554 555 556 557 558 559
    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase3(unittest.TestCase):
560

561
    def pool2d_wrapper(self, x):
562 563 564
        return paddle.nn.functional.avg_pool2d(x[0],
                                               kernel_size=2,
                                               padding=[1, 1])
565

566 567
    @prog_scope()
    def func(self, place):
568 569 570 571
        input_NCHW = fluid.layers.data(name="input_NCHW",
                                       shape=[2, 3, 5, 5],
                                       append_batch_size=False,
                                       dtype="float32")
572 573

        input_NCHW.persistable = True
574 575 576
        y = paddle.nn.functional.avg_pool2d(input_NCHW,
                                            kernel_size=2,
                                            padding=[1, 1])
577 578
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

579 580 581 582 583 584 585 586 587 588
        gradient_checker.double_grad_check([input_NCHW],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=0.05)
        gradient_checker.double_grad_check_for_dygraph(self.pool2d_wrapper,
                                                       [input_NCHW],
                                                       y,
                                                       x_init=x_arr,
                                                       place=place)
589 590 591 592 593 594 595 596 597 598

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase4(unittest.TestCase):
599

600 601 602
    def pool2d_wrapper(self, x):
        return paddle.nn.functional.avg_pool2d(x[0], kernel_size=[4, 4])

603 604
    @prog_scope()
    def func(self, place):
605 606 607 608
        input_NCHW = fluid.layers.data(name="input_NCHW",
                                       shape=[2, 3, 5, 5],
                                       append_batch_size=False,
                                       dtype="float32")
609 610 611

        input_NCHW.persistable = True
        y = layers.pool2d(input_NCHW, pool_size=[4, 4], pool_type="avg")
612
        y = paddle.nn.functional.avg_pool2d(input_NCHW, kernel_size=[4, 4])
613 614
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

615 616 617 618 619 620 621 622 623 624
        gradient_checker.double_grad_check([input_NCHW],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=0.05)
        gradient_checker.double_grad_check_for_dygraph(self.pool2d_wrapper,
                                                       [input_NCHW],
                                                       y,
                                                       x_init=x_arr,
                                                       place=place)
625 626 627 628 629 630 631 632 633

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


634 635
if __name__ == "__main__":
    unittest.main()